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Abstract: It is worthwhile to search for forms of coding, processing, and learning common to various cortical regions and cognitive
functions. Local cortical processors may coordinate their activity by maximizing the transmission of information coherently related to the
context in which it occurs, thus forming synchronized population codes. This coordination involves contextual field (CF) connections that
link processors within and between cortical regions. The effects of CF connections are distinguished from those mediating receptive field
(RF) input; it is shown how CFs can guide both learning and processing without becoming confused with the transmission of RF
information. Simulations explore the capabilities of networks built from local processors with both RF and CF connections. Physiological
evidence for synchronization, CFs, and plasticity of the RF and CF connections is described. Coordination via CFs is related to perceptual
grouping, the effects of context on contrast sensitivity, amblyopia, implicit influences of color in achromotopsia, object and word
perception, and the discovery of distal environmental variables and their interactions through self-organization. Cortical computation
could thus involve the flexible evaluation of relations between input signals by locally specialized but adaptive processors whose activity is
dynamically associated and coordinated within and between regions through specialized contextual connections.
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1. Introduction

The possibility of common foundations for cortical compu-
tation was first discussed by the current authors (Phillips is a
psychologist, Singer a neurophysiologist) in 1980. We had
collaborated in the early 1970s, comparing single unit
activity in cat lateral geniculate nucleus with the ability of
humans to detect the appearance and disappearance of
elements in random dot patterns (Phillips & Singer 1974;
Singer & Phillips 1974). This helped convince us that
psychophysics and neurophysiology could combine fruit-
fully and in detail. Since then we had not met for some years
and the neurophysiologist asked what the psychologist’s
current interests were. The ensuing conversation went
roughly as follows:

Psychologist: Well, I am mainly interested in the funda-
mental differences between different cognitive domains.
For example, what are the basic differences between sen-
sorimotor systems and the higher conceptual systems?
Then, within the conceptual systems, what are the basic
differences between visuospatial processing and verbal
processing?

Neurophysiologist: But why are you emphasizing differ-
ences? The cortical algorithm is everywhere the same.

Psychologist: Well, if that is so it is very interesting, but
from the psychological point of view there certainly seem to

be some major differences. Consider learning and memory,
for example. Information storage in the sensory systems is
of very short duration, less than a second in visual sensory
storage, whereas once it is put into a schematic conceptual
form information can be voluntarily maintained for many
seconds in short-term memory (STM) and can be learned
and stored indefinitely in long-term memory (LTM).

Neurophysiologist: But there is also long-term plasticity
in sensory systems, both during development and later. The
receptive fields of cells in primary sensory cortex depend
upon the stimulation they get during development. These
use-dependent modifications of synaptic transmission can
also occur in adults.

Psychologist: Yes, of course, such effects are well estab-
lished, but that is a quite different kind of learning.

Neurophysiologist: Well, is it? Why do you suppose that
learning and processing in the sensory cortex are funda-
mentally different from learning and processing elsewhere
in the cortex? Perhaps they are very similar, and from the
neurophysiological point of view that’s how it seems.

We are still searching for answers to the questions raised
by this discussion. Are there information processing opera-
tions that are common to different cortical regions and
different cognitive subsystems, and if so, what are these
operations? Why are they useful? How are they imple-
mented by cortical processes? Of course different cognitive
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functions are performed by different cortical regions and at
different levels of organization, but all regions of the neo-
cortex share a common basic internal organization; it is
because of this predominant homogeneity that it is also
called isocortex. Computational capabilities of general util-
ity may therefore arise from this common design. This
target article is concerned with what those capabilities
might be and how they arise from cortical structures and
processes.

The organization of cognition into distinct subsystems is
even more firmly established now than it was twenty years
ago. This does not imply differences in the information
processing operations that they perform, however, because
subsystems may differ in the information upon which they
operate, but not in the operations that they perform upon
that information. Many cognitive subsystems are distin-
guished from each other by reference to the information on
which they operate, but it is also likely that some cognitive
functions require special information processing capa-
bilities. These include episodic memory and working mem-
ory, intentional representation (i.e., processes that distin-
guish between representation and referent), and the
creative aspects of language and long-range strategic plan-
ning. Higher cognitive functions such as these are central to
human mental life and depend to a large extent upon
cortical activity. These functions may not arise in any simple
way from basic capabilities common to cortex in general,
however, because (1) intentional representation and lan-
guage are not characteristic of mammals in general but are
restricted to one or at most a few; (2) in contrast to skills,
episodic memories cannot be acquired in the absence of the
hippocampus (Squire 1992) and may require special com-
putational capabilities (McClelland et al. 1995); and (3) the
ability to dynamically create more than one level of group-
ing within the same set of units, such as [(AB)(CD)], may
involve special computational problems (Fodor & Pylyshyn
1988; Hummel & Holyoak 1993). Thus, our working as-
sumption is that some cognitive functions require special
capabilities in addition to those that are common to cortex
in general. Furthermore, although we take the abilities that
are provided by the common foundations for granted, they
are crucial to the sensory, perceptual, and motor skills on
which our daily lives depend.

1.1. Functional specialization and contextual
integration as basic aspects of cortical
computation

A vast body of findings shows that different cortical regions
and different cells within regions transmit information
about different things. Discussions of how the activity of
these specialized processors can be coordinated have an
equally long history, but this aspect remains much less well
understood. The particular form of integration with which
this target article is concerned is the one that arises from a
myriad of local coordinating interactions between pyrami-
dal cells within and between cortical regions. This does not
deny that the music of the hemispheres might be guided by
some kind of conductor, but it does imply that integration
can be achieved, at least in part, through local interactions
between the players themselves. Musicians have two differ-
ent sources of information that they normally use in two
different ways. They have the score to tell them what to
play, but they also watch and listen to each other to

determine exactly when and how loudly to play it. The local
processors that we postulate also have two classes of input.
One is the receptive field input that tells them what features
to signal, and the other is contextual input from the concur-
rent activity of other processors that is used to determine
exactly when and how confidently to signal the features for
which they have evidence.

A simple, general, and precise framework for describing
functional specialization in neural systems is provided by
the adaptive filter formalism (Carpenter 1989). The basic
idea is: the strengths of the synapses that mediate receptive
field input perform a selective filtering operation that can
be adapted through experience to better match the envi-
ronment and tasks to which the system is exposed. Filtering
is necessary for at least two reasons: (1) the amount of
sensory data to be processed is so great that predictive
relationships can only be found after dimensionality reduc-
tion; and (2) different information is relevant to different
purposes.

We now need to add contextual integration to such
formalisms. Filtering is useful because it contributes to the
more general goal of making good predictions. Predictive
relationships of varying degrees of complexity are richly
embedded within the input to the cortex, across both space
and time, and the discovery and use of these relationships is
a major goal of cortical computation at all stages and levels
of processing. The integrative interactions that we hypothe-
size can be thought of as using these predictive relation-
ships to produce patterns of activity that are coherent both
within and between various streams and levels of process-
ing. There is evidence that this involves synchronizing the
activity of dynamically specified subsets of cells, using
special synchronizing contextual connections that influence
the probability that the target cells fire at any moment (see,
e.g., Engel et al. 1992; Singer 1990; 1993; 1994a; 1995;
Singer & Gray 1995). A crucial aspect of this form of
integration is that context affects activity without corrupt-
ing the information transmitted by that activity about the
cell’s receptive field input. Here we summarize the evi-
dence for synchronization and for contextual connections,
analyzing computational capabilities that arise when corti-
cal processors receive local contextual inputs that can be
used to guide both learning and processing.

In the remainder of section 1, we outline the issues and
hypotheses to be discussed. Section 1.2 gives an informal
outline of the possibilities that arise when local cortical
processors coordinate their activities by using specialized
contextual inputs to form synchronized population codes
and to guide learning. Section 1.3 relates the codes and
processes we propose to other aspects of cortical function.
Section 1.4 reviews prior proposals using synchronized
population codes and contextual guidance. Section 1.5
summarizes the main hypotheses that we expect to be
controversial. Section 2 outlines arguments for and against
the hypothesis of common foundations for cortical compu-
tation. Section 3 specifies the goals of contextual guidance
using formal concepts from information theory and multi-
variate statistics. Computational studies showing the basic
capabilities of simple networks built from local processors
with contextual guidance are described. Section 4 outlines
evidence from neurobiology for contextual guidance and
synchronized population codes. Section 5 posits the rele-
vance of these hypotheses to psychological issues, describ-
ing evidence that is already available from behavioral
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studies as well as ways in which our suggestions can be
further tested and developed by such studies. Finally,
section 6 discusses a few of the issues that arise from these
hypotheses.

1.2. Coordinating activity through the local contextual
guidance of learning and processing

A starting point for our approach is the hypothesis that
although cortical circuits are constrained to operate only
upon the information that is locally available to them,
coordination of their activity with what is going on else-
where is central to their computational role. This is possible
because they receive locally specific contextual input from
other processors (but directly only from a tiny fraction of
the other processors in the cortex as a whole). The contex-
tual input is used to enhance selectively the transmission of
that information in the processor’s receptive field (RF)
input that is coherently related to the context. Networks of
such processors therefore tend to transmit sets of signals
that as far as possible maximize their mutual coherence. As
a signal transmits information only if it varies, we call this
capability the “maximization of coherent variation.” Useful
consequences that follow from it are discussed in section
1.2.3.

The usefulness of the ability to organize distributed
patterns of activity into coherent groups is widely acknowl-
edged in discussions of the “binding problem.” This prob-
lem would be solved if cells currently forming a coherent
group synchronized their spike trains to within a few
milliseconds. This possibility was proposed by Milner
(1974) and has long been advocated on both theoretical and
biophysical grounds (von der Malsburg 1981). Neuro-
physiological evidence (outlined in sect. 4) now suggests
that the spiking activity of cortical neurons can be syn-
chronized to within a few milliseconds in a way that is
appropriate to the prevailing context and includes synchro-
nization between neurons in different streams of process-
ing and between neurons at different stages of processing.

Synchronization would be an effective signal for group-
ing because inputs to pyramidal neurons are summed much
more effectively if they are synchronized (Abeles 1982,
1991; Bernander et al. 1991). Synchronization is an inher-
ently relational signal because it depends upon temporal
relations between inputs from separate sources. Thus,
unlike the more commonly studied rate and place codes, it
is not defined upon the signals produced by individual cells,
and will not be revealed by studies of single cell activity.

A major feature of the work on synchronization is that it
suggests the existence of specialized cortico-cortical syn-
chronizing connections that modulate postsynaptic activity
without corrupting the information transmitted about the
receptive field features to which the cell is selectively
sensitive (Engel et al. 1991b; König et al. 1993; Löwel &
Singer 1992; Munk et al. 1992). In other words, these
connections help determine exactly when a cell fires but
they do not change the feature signaled by that activity. To
explain how this is possible, it is often suggested that the
synchronizing connections influence the phase but not the
amplitude of oscillatory outputs produced by the local
processors (e.g., Hummel & Biederman 1992; Schillen &
König 1994; Shastri & Ajjanagadde 1993). Though useful,
this may not be a general solution, however, to the problem
of combining both feature and grouping information within

the same signal (see, e.g., Nelson 1995). First, although
oscillations are likely to play a major role in synchronization,
they are not necessary because even single impulses can be
synchronized. Second, there is evidence that synchroniza-
tion can occur without oscillations (König et al. 1995).
Third, there is doubt as to the generality of oscillations in
the normal functioning of cortex (e.g., Bair et al. 1994;
Tovee & Rolls 1992; Young et al. 1992). The computational
studies described in section 3 show how contextual inputs
can guide processing without corrupting the transmission
of RF information, and they do this in a way that does not
require oscillations even though it is compatible with them.

Another major focus of this paper is the possibilities that
arise for learning when processors receive local contextual
inputs. The computational studies outlined in section 3
show that idealized local processors with contextual inputs
can discover those receptive field features that are predict-
ably related to the context within which they occur and can
discover the predictive relations between them: In addition
to learning the associations between features, the local
processors can preferentially discover those features that
are associated.

1.2.1. Local processors with contextual guidance. Local
processors with contextual guidance receive a set of recep-
tive field (RF) and contextual field (CF) inputs (Fig. 1a).
These processors are intended to be loosely analogous to
local cortical circuits. In relation to the RF input, they act as
filters that transmit information about the RF features to
which they are selectively sensitive. This selective sensi-
tivity is specified by the strengths, W, of the synaptic
connections that mediate the RF input. In addition, the
probability that they transmit information about any RF
feature at any moment is increased if that feature is as
predicted by the context and decreased if it is incompatible
with that prediction. The predictions are specified by the
CF inputs as mediated by the strengths, V, of their synaptic
connections. A crucial aspect of this form of processing is
that the predictions are not confused with the RF evidence.
The role of context is not to impose its predictions upon the
processor, but to emphasize those outputs for which there is
RF evidence and which are also coherently related to the
context. This can be done by using context to influence the
confidence with which decisions are made on the basis of
the RF evidence and to synchronize coherent outputs.

The strengths of the synapses (W and V) are not perma-
nently fixed, but can change so as to better adapt the
detailed operations performed by the processors to the
statistical structure of the inputs they receive. We hypothe-
size that providing local processors with contextual input
enhances the learning of which they are capable. Major
issues to be discussed accordingly concern what the goals of
this learning could be, and by what synaptic modifications
they may be achieved.

As illustrated by the width of the arrows in Figure 1,
processors are assumed to have fewer outputs than RF
inputs. This reflects the long-standing hypothesis that a
major goal of sensory and perceptual processes is recoding
to reduce redundancy (Atick 1992; Atick & Redlich 1990;
1993; Attneave 1954; Baddeley & Hancock 1991; Barlow
1959; 1961; 1972; 1989; Barlow & Foldiak 1989; Foldiak
1990; Li & Atick 1994; Linsker 1988; Redlich 1993). The
underlying idea is that the flood of data to be processed can
be reduced to more manageable amounts by using the



Phillips & Singer: Cortical computation

660 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

Figure 1. Local processors with contextual guidance and some
of the network architectures that can be built from them. Solid
black lines show receptive field (RF) inputs; dashed grey lines
show contextual field (CF) inputs. (a) A local processor receives
input from a receptive field vector, RF, via a vector of synaptic
strengths, W, and from a contextual field vector, CF, via a vector of
synaptic strengths, V. Each element of the two input vectors is
multiplied by its particular synaptic strength. These are summed
to give the integrated RF and CF inputs r and c, which are then
used as specified by the transfer function to determine output
probability. For simplicity, the synaptic strength vectors and the
integrated inputs are omitted in the examples of possible architec-
tures shown in (b), (c), and (d). (b) Three processors, i, j, and k,
with nonoverlapping RFs are linked by contextual connections.
Large arrays of processors could be linked by such lateral contex-
tual connections within and between cortical regions. (c) A pro-
cessor, i, receives contextual input from a processor, m, to which it
contributes RF input. The processor m also receives both RF and
CF input from other sources, however, so its activity is only
partially determined by the input it receives from i. Descending
feedback pathways in the cortex could include such contextual
connections. (d) Two processors, i and j, receive RF input from a
common source, but receive contextual input from different
sources. As a result of these differing contextual inputs, the
processors i and j could learn to extract different aspects of their
common RF input, thus establishing appropriate functional spe-
cializations.

statistical structure in the data to recode the information it
contains, with frequent input patterns being translated into
codes that contain much less data than the patterns them-
selves. If the computational goals can be clearly specified,
such as by using information theory, then rules for learning
can be derived from those goals (Intrator & Cooper 1995a).
An important limitation of recoding as a goal for cortical

computation is that ultimately it is subordinate to the goal of
associative learning. There would be no point in recoding
information about variables that have no relation to any-
thing else known to the system. Proponents of recoding to
reduce redundancy therefore usually see it as being pre-
paratory to associative learning (e.g., Barlow 1993). A
distinctive advantage of the processors that we propose
here is that they are not forced to transmit whatever RF
variables carry the most information, but can selectively
discover those that are associatively related to the context in
which the processor operates.

1.2.2. Architectures that can be built from local pro-
cessors with contextual guidance. Many different net-
work architectures can be built from such processors.
Felleman and Van Essen (1991) review a great deal of
evidence concerning the overall system architecture within
which local cortical processors operate. They distinguish
three broad classes of connections between cortical re-
gions: ascending feedforward connections, descending
feedback connections, and lateral connections between
regions that are at approximately the same stage of process-
ing. The ascending projections from one stage to the next
are localized so that neurons receive their primary ascend-
ing inputs from a small subset of neurons at the preceding
stage, with different local groups of neurons receiving input
from different subsets. Thus, many distinct streams of
processing project through a few stages in converging and
diverging ways, with primary feedforward connections dis-
tinguishable from lateral and descending connections.

The local processors hypothesized here are broadly com-
patible with such an architecture. The ascending connec-
tions could provide much of the RF input, and both the
descending and the lateral connections could include CF
input. Furthermore, within cortical regions there are many
distinct streams of processing; these are linked by long-
range horizontal collaterals that could transmit synchroniz-
ing contextual information. Mutual contextual guidance of
this sort is shown in Figure 1b; it could link distinct streams
of processing both within and across cortical regions. An-
other possibility is that contextual inputs could be received
from processors to which the processor concerned contrib-
utes RF input. This is shown in Figure 1c and would allow
activity to be coordinated across different stages of process-
ing, as well as within stages. Finally, Figure 1d shows that
one set of RF signals can be transmitted to separate
processors with different contextual fields. Each processor
will emphasize the RF information that is relevant to its
context, thus enabling different processors to extract differ-
ent aspects of the same RF activity.

The patterns of connectivity shown in Figure 1 are not
mutually exclusive and can be combined in various ways.
Furthermore, separate modules with recurrent internal RF
connectivity could be linked by CFs that coordinate their
activities. We assume that genetic constraints play a major
role in determining patterns of RF and CF connectivity,
and that the CF inputs, like RF inputs, are specific to the
role of each local processor. For example, at early stages of
the analysis of a visual scene, other parts of the scene might
provide a useful context, whereas at later stages of process-
ing, information from other modalities might provide a
more appropriate context. If local cortical processors do
receive specialized contextual inputs as proposed, then
principles or heuristics for determining where they should
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come from will be an important issue. Tononi et al. (1994;
1996) have shown that the overall pattern of cortical con-
nectivity balances functional integration, produced here by
the contextual inputs, against functional segregation, pro-
duced here by the RF filter functions. This produces a
system with high complexity, high computing power, and
the ability to use context to “go beyond the sensory informa-
tion given” in an appropriate way.

1.2.3. Computational capabilities of networks built from
local processors with contextual guidance. (1) The most
important capability that arises in relation to processing is
that context will increase the probability that mutually
coherent subsets of units will be active at any moment. That
is, they will tend to produce synchronized population codes.
It has already been argued in detail elsewhere (Singer 1990;
1993; 1994) that such codes have important advantages:
They are flexible because they are created dynamically;
they are fast because in the limit all that needs to be
synchronized are single spikes from each of the cells to be
grouped; they can signal many different patterns because at
different times each cell can be part of different groups;
they do not compromise the meaning of the signals to be
grouped; and, finally, they transmit appropriately struc-
tured patterns of activity rather than just arbitrary or
unstructured labels (Phillips 1997; Phillips et al. 1995a).

A layer built from local processors with contextual guid-
ance therefore produces patterns of activity where the RF
filter functions ensure that the individual signals are justi-
fied by the RF input and the contextual connections maxi-
mize their coherence as a group. This implies that in the
case of perceptual grouping, for example, the Gestalt crite-
ria are embodied in the CF connections between the
entities that are grouped. This predicts that synchronization
of active cells in the visual system should reflect Gestalt
principles of grouping. Evidence that this is so will be
outlined in section 4.

One way to see what is implied by dynamic flexibility is to
note that if these processes are common to cortex then the
inputs to each area will themselves be organized by the
grouping processes operating in the areas generating those
inputs. The RF filter functions will therefore not operate
upon rigidly fixed data bases but upon ones that are already
organized so as to emphasize coherent subsets of data
within the RF. As those coherent subsets can occur within
each RF in a very large number of different ways, this
enables the receiving cells to respond appropriately to
many more inputs than they could do without the dynamic
grouping. In addition, there is evidence that cortex receives
inputs that are dynamically grouped in the thalamus (Sillito
et al. 1994) and retina (Neuenschwander et al. 1996).1

(2) In addition to grouping related features that are
clearly evident in the RF input, local contextual information
could improve the perception of features that are weak or
ambiguous.

(3) An important capability that arises in relation to
learning is that by using contextual input local processors
can become selectively sensitive to those variables within
their RF input that are predictably related to that context.2

The possibility of using relations between separate data-
sets as a basis for self-organization is illustrated in Figure 2.
As an example of this approach, Becker and Hinton (1992)
show how stereo-depth can be discovered by using the
mutual information between separate streams of process-

Figure 2. The aim of learning (based upon an unpublished
diagram by Geoff Hinton). Data from an input image are pro-
cessed by many parallel streams, of which only two are shown
here. One part of the input space is represented by the oval on the
left, with just one data point of many being shown. Another part of
the input space is represented by the oval on the right, with more
of the data points being shown. Predictive relationships exist
between separate input data-sets but these relations will often be
between higher-order functions rather than between pairs of
individual data points. The aim of learning is to find mappings into
new spaces that make the predictive relationships easier to com-
pute. Predictions are here shown going in only one direction but
they may also be reciprocal. In our approach, but not in that of
Becker and Hinton (1992), the predictions are used to guide the
short-term processing as well as the learning.

ing that receive inputs from neighboring patches of the
image that are independent except for having the same
disparity. Stone and Bray (1995) and Stone (1996) have also
shown how coherence across time can be used to learn
invariances and other salient visual parameters.3 A general
epistemological argument for this approach is that predic-
tive relationships between diverse data-sets must depend in
some way upon their distal origins. Discovering those
relationships will therefore reveal distal variables and inter-
actions within the proximal data.

(4) Processors with contextual inputs from different
sources, as shown in Figure 1d, will become selectively
sensitive to those aspects of their inputs that are relevant to
those contexts. Thus this will help create appropriate func-
tional specializations and will entail appropriate generaliza-
tions because the outputs of each processor will generalize
across irrelevant dimensions of RF variation. We must
recognize facial expressions despite variations in personal
identity; we must recognize individual faces despite varia-
tions in facial expressions. Variables that are crucial to one
goal may be irrelevant sources of noise to another. This
problem would be solved if different cortical regions have a
selective sensitivity to just those variables that are relevant
to their role, and the evidence suggests that this is how face
perception is organized (Bruce 1988); but how can local
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processors know what is relevant? Genetic specification
cannot be the whole answer because some functional spe-
cialization is established through learning. Context could
contribute to such learning by guiding RF selectivity to the
relevant variables. For example, regions receiving RF input
from visually perceived faces and CF input from regions
concerned with evaluating emotional states could then
learn to become selectively sensitive to just those variables
in face images that are predictably related to emotional
expression.

1.3. Relation to other aspects of cortical computation

The CF inputs that we postulate are not equivalent to
inputs from “beyond the classical receptive field” in gen-
eral. Many investigations show that the response of cortical
cells to their preferred stimulus is suppressed by the pres-
ence of similar stimuli in the surround (e.g., Allman et al.
1985; Blakemore & Tobin 1972; Knierem & Van Essen
1992; Nelson & Frost 1978). These effects are not owing to
the CF inputs that we propose because they are not
concerned with producing coherent patterns of activity
across multiple feature detectors, but with using informa-
tion about the surround to suppress responses that do not
differ from that surround. This is quite different from the
use of contextual predictions to increase the probability of
signals that agree with those predictions. It is more appro-
priate to view the subtraction of activity that is summed
over some surrounding region as being included in the
mechanisms that determine RF selectivity, rather than as
being part of the mechanism for coordinating the activity of
many simultaneously active feature detectors.

Receptive fields that emphasize contrast with the sur-
round show how the maximization of coherence is compati-
ble with evidence for processes that emphasize the unex-
pected. If a single element differs from the others in an
array on some simple variable, such as color or orientation,
then the odd one out is very noticeable. This is evidence for
processes that emphasize what is not predicted by the
surround; we account for that evidence by noting that RFs
usually develop so as to detect such differences. Enhanced
transmission of the unexpected is also proposed by some
theories to be a major role for the descending feedback
projections from higher to lower stages of processing (e.g.,
Mumford 1992; Pece 1992). In contrast to these theories,
Sillito et al. (1994) provide evidence that feedback from the
primary visual cortex (V1) to the lateral geniculate nucleus
(LGN) synchronizes the activity of those LGN cells that
agree with the interpretation at the higher level. Further-
more, psychological experiments show that context often
supports what is consistent with that context (e.g., Bieder-
man 1972; McClelland 1978; McClelland et al. 1986; Pal-
mer 1975).

We must distinguish the population codes proposed here
from the population vector codes proposed by Georgo-
poulos (1990). The latter is a proposal about how a single
vector could be signaled by the activity of a group of cells.
Synchronization specifies which cells are in the same group.
Synchronized population codes are compatible with but do
not require population vector coding.

Finally, we need to relate the local contextual guidance
that we hypothesize to spatial attention, arousal, and other
strategic control processes. Local contextual guidance
arises automatically from the interactions of local pro-

cessors and does not require specialized circuitry such as
that hypothesized to be involved in spatial attention (e.g.,
Posner & Rothbart 1994; Van Essen et al. 1994). Further-
more, the contextual inputs that we postulate are highly
specific in relation to both timing and the features they
predict. Spatial attention seems to operate on a longer time
scale and simply enhances the processing of whatever
features are present at the locations and spatial scales
attended, rather than enhancing some features and oppos-
ing others on a locally specific basis (Kröse & Julesz 1989;
Nakayama & Mackeben 1989). Nevertheless, if there are
local contextual interactions of the kind that we postulate,
then attentional control processes will operate upon the
synchronized population codes that those interactions pro-
duce, possibly themselves using mechanisms that increase
the synchronicity of attended items (see Tiitinen et al.,
1993, for empirical evidence on this from EEG recordings,
and Goebel, 1993, for computational studies).

1.4. Prior theories using synchronized population
codes and contextual guidance

The idea of population coding has a long history, with
Hebb’s (1949) notion of the cell-assembly serving as the
leading representative. The further possibility that syn-
chronized activity on a fine time scale specifies which
subset of neurons is grouped to form the population code at
any moment also has a long history (e.g., Abeles et al. 1993a;
1993b; Bienenstock 1995; Crick & Koch 1990; Eckhorn et
al. 1991a; 1991b; Engel et al. 1992; Goebel 1993; Tononi et
al. 1992a; 1992b; von der Malsburg 1981; Wang et al. 1990;
Yamaguchi & Shimizu 1994). It has also been shown how
synchronization can play a major role in neural network
architectures based upon adaptive resonance (artmaps)
and the boundary contour system (BCS) (Grossberg 1993;
Grossberg & Somers 1991).

Various versions of the distinction between RFs and CFs
also occur in prior theories. The coupling connections
referred to in previous discussions of the substrate of
synchronization (e.g., Singer 1990; 1993; 1994) are an
example of what are referred to here as CFs. Further
examples are the linking connections proposed by Eckhorn
et al. (1991a) and the fast enabling links proposed by
Hummel and Biederman (1992). Some aspects of the
distinction also occur in theories that do not rely upon
synchronization. Ullman (1994), for example, proposes that
there is a bidirectional, bottom-up and top-down flow of
information in which activity in one stream “primes” activ-
ity in the equivalent units in the reverse stream. This
priming acts to increase the probability of transmission of
any RF information with which it agrees. It uses mecha-
nisms that differ from those of CFs but has similar effects: it
modulates the probability of signals being transmitted in
very locally specific ways and does so without corrupting
the transmission of RF information.

One of the earliest theories with a distinction that is
analogous to that between RFs and CFs is Edelman’s (1978;
1989). This approach has been developed using highly
detailed synthetic modeling (Reeke et al. 1990), which use
large simulations (from about 1 to about 3.5 million connec-
tions) with many biological features, from intracellular
processing to the overall principles of connectivity being
built in. The models developed achieve perceptual group-
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ing (Sporns et al. 1991) and form recognition that is inde-
pendent of color and position (Tononi et al. 1992b); they
also account for several other perceptual phenomena. De-
tailed analysis of their fine-grained internal temporal dy-
namics fits well with that observed in cortex (Sporns et al.
1989; Tononi et al. 1992b). Phasic reentrant signaling is
crucial to the success of these simulations. Its functional
role and mechanisms are closely analogous to that proposed
here for contextual input. Our approach differs from theirs
in minor differences of emphasis, however. For example,
we put more emphasis upon simplifying computational
studies, formal descriptions of the underlying computa-
tional goals, and the possibility that information supplied
by the contextual connections could guide RF learning,
thereby helping to establish some of the functional special-
ization that studies of reentrance have so far built in.

The use of predictive relationships between separate
streams of processing to guide learning within streams has
also been studied previously (e.g., Becker 1996; Becker &
Hinton 1992; de Sa 1994a; 1994b; Schmidhuber & Pre-
linger 1993; Stone 1996; Stone & Bray 1995). Although
there is basic agreement between our work and that of
Becker and Hinton (1992), there are also some important
differences. One difference is that we emphasize the use of
context to coordinate ongoing activity and to form syn-
chronized population codes, whereas Becker and Hinton
communicate information between streams of processing
for the purposes of learning only. Their reasoning was to
ensure that distinct streams of processing could not in-
crease the mutual information in their outputs simply by
driving each other. Thus, in the approach of Becker and
Hinton, local processors receive inputs that are used to
change synaptic strength without directly affecting post-
synaptic activity. We know of no biological evidence for
such a process. Furthermore, a second major difference
that follows from the first is that in Becker and Hinton’s
approach there are no cross-stream predictions to learn,
whereas in our approach the CF predictions do play a major
role because they embody the knowledge used to integrate
ongoing activity and form synchronized population codes.
A third difference is that in our approach a single parameter
specifies the balance between maximizing information
transmission within streams and maximizing coherence
between streams. No such parameter exists in their ap-
proach.

1.5. Summary of some controversial hypotheses

The above considerations lead to hypotheses that we expect
to be controversial. The first hypothesis is that there are
basic computational capabilities common to many different
cortical regions and to many different species. Second, in
relation to the general functional role of any such capa-
bilities, our hypothesis is that they include processes that
gradually adapt them to the general statistical structure of
the world in which the cortex finds itself, and they do so by
maximizing the transmission of information that is predict-
ably related to the context in which it occurs. Third, in
relation to coding, we argue for synchronized population
codes. Such codes differ from single-cell codes in that they
convey information about internal structure; they differ
from the more usual form of distributed code in that stored
knowledge is used to group the elements into coherent
subsets. Fourth, in relation to the short-term processing

dynamics, we hypothesize that local processors use contex-
tual predictions to guide processing but without confound-
ing those predictions with the information that they trans-
mit about their receptive field inputs. This contrasts with
the assumption, common to many connectionist theories of
cognition, that local processors treat all of their specific
informative inputs in essentially the same kind of way. Fifth,
in relation to learning, we propose that RF features that are
predictably related to the context in which they occur can
be discovered – along with the predictive relationships
between them. This contrasts with the common assumption
that feature discovery is independent of associative learn-
ing. Finally, in relation to epistemology, we suggest that by
discovering latent variables in diverse data-sets and the
relations between them, the local processors are in effect
discovering distal variables and relationships. As a conse-
quence, they lay foundations for representation and mean-
ing. Nevertheless, we will argue that these foundations do
not constitute intentional representation proper because
such local processors do not distinguish between the signals
they receive and the distal causes from which those signals
arise.

2. Arguments for and against common
foundations for cortical computation

2.1. Specialized cortical regions and their common
intrinsic organization

It is well established that the cortex contains many spe-
cialized regions, but our central concern is with their
internal organization. In what ways is it common, and in
what ways does it vary? Although differences exist, there is a
widespread belief in commonalities: “It is easy to recognize
a histological (e.g., Golgi) preparation as being cortex rather
than cerebellum or tectum. It is much more difficult to tell
whether it is human or bovine, motor, sensory, or associative
cortex” (Braitenberg 1978, p. 444). “Laminations and verti-
cal connections between laminae are hallmarks of all corti-
cal systems, the morphological and physiological charac-
teristics of cortical neurons are equivalent in different
species, as are the kinds of synaptic interactions involving
cortical neurons. This similarity in the organization of the
cerebral cortex extends even to the specific details of
cortical circuitry” (White 1989, p. 179). “Despite the many
detailed properties that can be used to differentiate among
the various cortical areas, the common properties of all the
cortical areas are overwhelming. The same cell types, the
same types of connections, and the same distributions of
cells and connections across the cortical depth are found in
all parts of the isocortex. These properties of the cortex are
markedly different from those found in the other parts of
the brain” (Abeles 1991, p. 33).

If there are commonalities, it is crucial to find out what
they are. For extensive reviews of this issue, see Edelman
and Mountcastle (1978), Rakic and Singer (1988), Martin
(1988), White (1989), Shepherd (1990), Braitenberg and
Schüz (1991), and Abeles (1991). Commonalities may exist
at a number of different levels of organization and with
respect to various aspects of function. Some may arise from
small populations of pyramidal cells and their associated
local circuit neurons, such as in the “canonical circuit” of
Douglas and Martin (1990), or the “basic circuit” of Shep-
herd and Koch (1990). Others may arise at lower levels,
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such as the morphology and physiology common to pyrami-
dal cells. Hence, a common multicellular circuit is not
necessarily implied by the hypothesis of common founda-
tions for cortical computation because they could also arise
at other levels of organization.

The basic homogeneity of the neocortex is widely
thought to imply common information processing opera-
tions: “The typical wiring of the cortex, which is invariant
irrespective of local functional specialization, must be the
substrate of a special kind of operation which is typical for
the cortical level” (Braitenberg 1978, p. 444). “It is taken as
an article of faith that there is an information processing
algorithm unique to cortex that is a product of the regu-
larities of its architecture” (Stryker 1988, p. 133). “For
many anatomists, it seems perverse to regard the visual
cortex as an ad hoc collection of specialist circuits, rather
than a set of basic circuits adapted to perform many
different tasks. . . . For the neocortex, an unconventional
class of models needs to be developed – models that are
neural networks, but based directly on the biology; derived
from visual cortex, but not designed to solve a particular
problem in visual processing” (Douglas & Martin 1991,
pp. 291–92). Such views have a long history (e.g., Edelman
& Mountcastle 1978; Lorentó de No 1949; Rockel et al.
1980).

The belief in commonalities is supported by evidence
that cortex contains some generalized learning algorithm
that adapts each region to the input it receives. For exam-
ple, it has been shown that sensitivity to visual features can
be induced in the primary auditory cortex of neonatal
ferrets by replacing its normal auditory input with visual
projections (Sur et al. 1988). Similarly, it has been shown
that visual cortex has the potential to develop an array of
functional units that is appropriate to the somatosensory
input (Schlaggar & O’Leary 1991).

Although these arguments for commonalities have force,
they are not conclusive. Noting similarities will not be
convincing until we can see clearly how they provide
capabilities that are useful to many different cortical re-
gions. Differences that are critical from a computational
point of view may not be obvious from an anatomical or
physiological point of view. Furthermore, the suggestion
that some form of columnar organization is common to the
whole of cortex can be criticized (e.g., Purves et al. 1992;
Swindale 1990). Therefore, it is important to note that
although “cortical columns” are not central to the hypoth-
eses developed here, criticism of this idea suggests limita-
tions upon anatomical arguments for commonalities.

2.2. Specialized cognitive functions and their common
computational requirements

Functional specialization is also a major feature of cognitive
organization. This has been established by studies of both
normal and brain-damaged subjects, with cognitive neuro-
psychology providing a rich source of data and theory (Ellis
& Young 1988; McCarthy & Warrington 1990; Shallice
1988). Functional specialization is most firmly established
for perceptual and motor functions. Its existence and na-
ture in the highest level functions such as strategic control is
less firmly established, but there is some evidence for it
even there (Shallice 1988; 1991).

The inferences drawn from cognitive and neuropsycho-
logical investigations are often shown in diagrams of func-

tional specialization and information flow. Our primary
concern here is not with this system level of organization,
but with the operations that are performed by the various
cognitive subsystems. What are these operations, and
which, if any, are common to different subsystems? Map-
ping the cognitive architecture is a complex and important
task, but adding or deleting subsystems and routes between
them will only be crucial to the search for commonalities to
the extent that it changes the set of basic computational
capabilities required. What those capabilities are is not
obvious. This issue needs wider discussion.

One simple aspect of cognitive neuropsychological the-
ory that suggests common operations is that subsystems are
often distinguished by the content of the information with
which they are concerned. This suggests that they differ
primarily in what they operate upon, rather than in the
operations that they are required to perform upon that
information.

In contrast to our emphasis upon commonalities, studies
of basic cognitive processes can give rise to skepticism
about the value of a search for general principles. Crick
reports the view to which Ramachandran has been led by
his elegant and ingenious psychophysical studies, as fol-
lows: “It may not be too farfetched to suggest that the visual
system uses a bewildering array of special-purpose tailor-
made tricks and rules-of-thumb to solve its problems. If this
pessimistic view of perception is correct, then the task of
vision researchers ought to be to uncover these rules rather
than to attribute to the system a degree of sophistication
that it simply doesn’t possess. Seeking overarching princi-
ples may be an exercise in futility” (Crick 1988, p. 156).
Even with respect to Ramachandran’s argument, however,
Crick then adds: “It is, of course, possible that underlying
all the various tricks there are just a few basic learning
algorithms that, building on the crude structures produced
by genetics, produces this complicated variety of mecha-
nisms” (p. 156).

2.3. Evolutionary arguments

The cerebral neocortex evolved as an add-on to preexisting
neural systems and has expanded rapidly at various stages of
mammalian evolution (Jerison 1973). The speed of this
evolution has been used to support the view that it em-
bodies a multipurpose form of computation: “Neocortex
has expanded rapidly in phylogeny by creating multiple new
areas. While mammals with very small cortices have behav-
ioral capacities no more impressive than noncorticate ani-
mals, the capacity for rapid phylogenetic change may be the
most important feature of cortex” (Stryker 1988, p. 133).

There is a separate and important evolutionary function that a
generic principle for the development of a perceptual network
layer – whether it be infomax or some other principle – can
serve. Suppose that an evolutionary mutation produces a mod-
ified eye, or merges the auditory signals into the visual pathway
at some new point. If there were no generic principle for layer
development, we might imagine that mutations would have to
occur simultaneously in the processing function of several
layers, for those layers to be able to use the novel input properly.
But if there is such a generic principle – one that applies to each
layer regardless of what type of input reaches it – then the novel
input will automatically be processed in accordance with that
principle. This suggests that the existence of a generic principle
may greatly increase the likelihood of a mutation being adap-
tive. (Linsker 1988, pp. 116–17)
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Another evolutionary argument for commonalities arises
from the comparative study of learning. After an extensive
search for basic differences in learning abilities across
various species, Macphail (1987) concluded that all the
problem solving abilities of nonhuman animals arise di-
rectly from a common basic associative process. Further-
more, the common process that he inferred from these
comparisons is one that learns the causal links between
events, that is, one that learns what predicts what.

Evolutionary arguments can also be used to oppose the
hypothesis of commonalities. Tooby and Cosmides (1995)
argue that the evolutionary perspective entails the func-
tional analysis of niche-differentiated cognitive and neural
machinery that is unique to the species: “the human cogni-
tive architecture is far more likely to resemble a confedera-
tion of hundreds or thousands of functionally dedicated
computers, designed to solve problems endemic to the
Pleistocene, than it is to resemble a single general-purpose
computer equipped with a small number of general-
purpose procedures such as association formation, catego-
rization, or production-rule formation” (Tooby & Cosmides
1995, p. 1189). The denial of a small number of general-
purpose learning procedures is a crucial part of this per-
spective. Gallistel (1995) concludes that the catalog of
special-purpose learning procedures, such as the ability of
birds to learn the position of the celestial pole, could be
enlarged indefinitely.4

These arguments do not settle the issue, however. Nei-
ther the presence of highly specific abilities nor the absence
of a single all-powerful ability implies that there are no
abilities common to many different species and to many
different cortical regions. To rebut the view that classical
and operant conditioning are general purpose procedures,
Gallistel (1995) proposes that they are specialized for the
solution of problems in multivariate, nonstationary time
series analysis. This enables them to figure out what pre-
dicts what. Such a capability may not be all-purpose but it is
far less specialized than an ability that can learn only the
position of the celestial pole.

2.4. Computational arguments

Impressive advances in the theory and technology of neural
computation since 1980 have greatly encouraged our
search for commonalities. This is because they show that
powerful multipurpose capabilities can be implemented in
neural systems (e.g., Amit 1989; Gluck & Rumelhart 1990;
Rumelhart & McClelland 1986). They suggest that these
capabilities are likely to contrast with those of conventional
von Neumann computation and it has often been proposed
that this contrast depends upon the use of distributed
representations or population codes:

Distributed representations give rise to some powerful and
unexpected emergent properties. . . . For example, distributed
representations are good for content-addressable memory, au-
tomatic generalization, and the selection of the rule that best fits
the current situation. . . . Thus, the contribution that an analysis
of distributed representations can make to these higher-level
formalisms is to legitimize certain powerful, primitive opera-
tions which would otherwise appear to be an appeal to magic.
(Hinton et al. 1986, p. 79)

This viewpoint is important because it suggests that cogni-
tion may be based upon computational primitives that are
not obvious a priori, but which are of general utility.

3. Computational studies of the contextual
guidance of learning and processing

This section is concerned with what Marr (1982) calls
computational theory. If we are ever to understand how the
cortex works, we must understand the work it does. What
that work might be at the level of local cortical circuits is far
from obvious. The hypothesis being examined here is that it
includes the maximization of coherent variation, that is,
transmitting as much information as possible while keeping
it coherently related to what is going on elsewhere, and thus
keeping it “meaningful.” These studies are designed as
simplifying abstractions, not as detailed models of biolog-
ical systems. Their goal is to make the underlying computa-
tional task and strategy clear (Marr 1982; Phillips 1997;
Sejnowski et al. 1988). This will make it easier to build and
interpret detailed models that embody that strategy, and to
design experimental paradigms to determine whether it is
used by real biological systems.

3.1. Transfer functions

If the role of context is to modulate transmission through
local processors so as to emphasize coherent outputs but
without corrupting the information that is transmitted
about the RF input, then we need a transfer function with
the following properties. If there is no RF input then output
should remain at the neutral level; if there is no CF input
then the output should be monotonically related to RF
input in some standard nonlinear and biologically plausible
way; if RF and CF inputs agree then the gain of the function
relating output to RF input should be increased; if RF and
CF inputs disagree then the gain of the function relating
output to RF input should be decreased; CF input should
affect the confidence with which decisions are made but
only the RF input should determine what decisions are
made. Physiological studies outlined in section 4.2 show
that neurons do indeed receive two classes of input that
differ in approximately the way this suggests. In addition to
the classical forms of excitatory and inhibitory input, they
also receive inputs, such as those mediated by NMDA
receptors, whose effects depend upon the prevailing state
of activation and could therefore fulfill the gain-controlling
role of CFs (e.g., Fox et al. 1990). A function, A(r,c), giving
the internal activation of probabilistic bipolar (–1,1) units
has been derived from these computational and physiologi-
cal considerations (Kay & Phillips 1994; 1997; Phillips et al.
1995b), such that A(r,c) 5 0.5r [1 1 exp(2rc)] where r 5
summed weighted RF inputs including any bias input and c
5 summed weighted CF inputs including any bias input.
An equivalent activation function can be given for pro-
cessors that produce binary (0,1) outputs. To compute the
output probability in the simulations we apply the standard
logistic squashing function to the internal activation, so the
transfer function as a whole is composed of the activation
function followed by the squashing function. The neutral
level is given by an output probability of 0.5. The contin-
uous value transmitted between units is the expected value
of outputs with this probability, which ranges from–1 to 1.
As Figure 3 shows, this transfer function has the properties
required. It is not unique, but it is a clear and simple
representative of the limited class of functions with these
properties (Kay & Phillips 1994; 1997). A natural inter-
pretation of the output given by this transfer function is that
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Figure 3. A transfer function for local processors with contex-
tual guidance showing how output probability is related to the
integrated receptive field (RF) input, r, and to the integrated
contextual field (CF) input, c. When the RF input provides no
evidence in favor of either a positive or a negative output decision,
then r 5 0; output remains at the neutral probability level of 0.5
and is unaffected by CF input. The lower panel shows the effect of
context in the case where the RF input supports a positive output
decision, for just three specific values of c. When c 5 0, the
probability of a positive output increases from 0.5 as specified by
the logistic function. When the context predicts a positive output,
c 5 1; the probability of a positive output increases more rapidly as
a function of positive RF input. When the context predicts a
negative output, c 5 21, the probability of a positive output
increases less rapidly as a function of positive RF input. The
equivalent effects also occur when the RF input favors a negative
decision.

it gives the probability of a discrete event such as an action
potential.

Our computational and empirical studies both empha-
size three closely interrelated but distinct forms of neural
signaling: relative timing, place, and firing rate. The possi-
bility of using synchronization, or relative timing, to signal
grouping using the transfer function just defined follows
from the way in which the CFs influence output probability.
They increase the probability that outputs from different
processors will be produced at the same time if they are
mutually predictive, and they reduce this probability if the
outputs are opposed. Section 3.4.3 shows that this produces
coherent groupings.

Place coding is the transmission of information about
different features or variables by different cells. It allows for
the possibility that a number of different cells could all
transmit information about the same feature. This form of
signaling is preserved in the computational studies through
the use of outputs from different units to signal different
variables. Our emphasis upon self-organization implies that

this coding is not fully prespecified, but may change as the
system adapts to its inputs through learning.

The classical form assumed for rate coding is the trans-
mission of information through the firing rate of single cells
measured over a time period that is long relative to the
duration of individual action potentials. This is one way to
transmit information about continuous variables such as the
output probabilities generated by the above transfer func-
tion. It is not the only way, however. Imagine a set of cells
that produces action potentials with a probability that is
essentially the same for all cells, for example, some form of
neuronal group as proposed by Edelman (1978; 1989). The
crudest estimate of that probability is given by sampling a
single cell for a single brief interval that is long enough for
just one binary output, for example, 1 or 2 msec. A better
estimate can be obtained by sampling many of the cells for
this brief interval. If the output probability remains approx-
imately constant for a time of more than 1 or 2 msec, then
an even better estimate can be obtained by sampling many
of the cells over that longer time. Thus in this simple case
these measures give different estimates, with varying
amounts of precision and bias, of the same underlying
quantity. This suggests that much of classical single-unit
neurophysiology has been developed so as to exploit situa-
tions in which the relevant underlying quantity remains
constant for long enough to allow adequate estimates to be
obtained by sampling a single cell over longer intervals and
by averaging across trials. The success of this enterprise
does not imply that there are no sets of cells signaling the
same underlying quantity in those situations, nor does it
imply that there are no situations where that underlying
quantity changes rapidly. The only way to obtain an accu-
rate estimate in the latter case would be by averaging the
outputs of a set of cells over a brief interval.

Continuous values were transmitted between processors
in most of the simulations summarized below. However, a
few simulations have been run in which only binary values
were transmitted, that is, single units were used for each
output probability and at each iteration of the computation
of the short-term dynamics each unit transmitted just a
single binary output with that probability. Performance did
not seem to be very sensitive to this change, so our working
assumption is that high precision in transmitting the output
probabilities is not a necessary requirement of the compu-
tational approach being developed here.

3.2. Information-theoretic objective functions

The goal of maximizing the transmission of coherent infor-
mation can be specified in a precise but general way by
using the concepts of Shannon entropy, mutual informa-
tion, and conditional information (Kay & Phillips 1994;
1997; Phillips et al. 1995a; 1995b). The Shannon entropy,
H(X), is the average amount of information in any variable
X with a given probability distribution. Mutual information,
I(X;Y), is a measure of the average amount of information
that is shared by the probability distributions of two vari-
ables, for example, X and Y. It is a measure of the extent to
which uncertainty about one variable is reduced by observ-
ing the other, and it is a commonly used measure of
information transmission. If two variables are independent
then their mutual information will be zero. Conditional
information, H(XuY), is a measure of how much uncertainty
is left about one variable, for example, X, given that we
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Figure 4. A Venn diagram illustrating the decomposition of the
information in the output of a local processor, X, into four disjoint
components (in the case where I(X;R;C) is positive). A goal for
processing can be specified as the relative importance attached to
increasing or decreasing each component. H(X) is the total infor-
mation (Shannon entropy) in X, etc. The length and directions of
the arrows indicate the goal of increasing the transmission of
coherent information, I(X;R;C), as much as possible, increasing
the transmission of the information in the RF that is independent
of context, I(X;RuC), but to a lesser extent, and reducing the
transmission of any information in the context that is independent
of the RF, I(X;CuR). The fourth component of H(X), i.e.,
H(XuR,C), is information in the output that was in neither the RF
nor the CF input. This is noise generated by the processor itself.
Reduction in each of these last two components can either be
specified as part of the goal or can be left to occur by default as a
result of dedicating output channel capacity to other components.
The information flow is shown by the icon bottom left.

already know another variable, for example, Y. From these
definitions it follows that H(X) 5 I(X;Y) 1 H(XuY). For a
lucid introduction to these concepts see Hamming (1980).

Consider a local processor to have input vectors R and C
constituting the RF and CF inputs respectively, and to
produce an output vector X. The Shannon entropy in X can
be decomposed as follows

H(X) 5 I(X;R;C) 1 I(X; RuC) 1 I(X;CuR) 1 H(XuR,C)

where the first term on the right is a measure of the
information that is common to X, R, and C; the second is
that common to X and R but not to C; the third is that
common to X and C but not to R; and the fourth is
information in X that is in neither R nor C. Figure 4
illustrates this decomposition in the case where all compo-
nents are positive.

A goal for any local processor, X, can now be specified in
terms of these four components. Each processor must
adapt on the basis of just the information that is locally
accessible to it. We therefore specify how X should adapt
taking R and C as givens, but allowing for the possibility that
any connections upon which R and C depend may them-
selves be adapting in the same way. We require X to convey
information about major sources of variation in R, and in

particular those that are predictably related to C. Data
compression, as argued for in sections 1.1 and 1.2.1, will be
ensured by constraining processors to have fewer outputs
than inputs.

Discovering major sources of variation in R requires the
maximization of the mutual information between the output
and the RF input, I(X;R), which consists of two components,
that is, I(X;R;C) 1 I(X;RuC). Consider first the transmitted
information that is common to the RFs and CFs, that is,
I(X;R;C). This is the RF information that is coherently
related to the context, and we require the local processor to
transmit as much of it as possible. If the RFs and CFs arise
from separate data-sets then any information they share
must reflect some common distal influences upon those
data-sets, and the more diverse the data-sets the more distal
those common influences are likely to be. Maximizing this
component is therefore likely to transmit information about
variables with relevance to the environment within which
the system operates. Variables in the RF input that are
unrelated to the context, that is, I(X; RuC), may also be useful
at some later layer of processing or stage of learning,
however; thus, this component could also be increased,
though with a lower priority than the information that is
meaningfully related to its local context. Information that is
shared by X and C but not by R, that is, I(X;CuR), should be
decreased because the role of X is to transmit information
about R, but not about C. Finally, H(XuR,C) denotes varia-
tion in X that is due to neither R nor C, that is, intrinsic noise
that is added by the processor to its output. We would
normally wish this component to be reduced.

We can now formulate the general class of objective
functions

F 5 f0I(X;R;C) 1 f1I(X;RuC) 1 f2I(X;CuR) 1 f3H(XuR,C)

where F is the objective to be maximized, and f0, f1, f2
and f3 are parameters in the range 1 to –1. The fi
parameters weight the various components of the transmit-
ted information, H(X), with positive values for the compo-
nents that we wish to increase and negative values for
components that we wish to actively decrease. Different
objectives can therefore be given as different values of
these parameters. The goal of maximizing information
transmission within streams requires an objective function
F 5 I(X;R), which is given by setting f0 5 f1 5 1 and f2 5
f3 5 0. This is the goal studied by Linsker (1988) and many
others; it is called Infomax. The goal of maximizing the
transmission of information that is predictably related to
the context requires an objective function F 5 I(X;R;C).
This is given by setting f0 5 1 and f1 5 f2 5 f3 5 0. We
call this goal Coherent Infomax. It is equivalent to that
intended by Becker and Hinton (1992) but has a different
form because we make explicit the requirement to maxi-
mize the transmission of RF information.5

3.3. Learning rules

Learning rules can be derived by performing gradient
ascent on the objective function, F, relative to the strengths
of the RF and CF connections (Kay & Phillips 1994; 1997;
Phillips et al. 1995b). The dependence of change in connec-
tion strength upon postsynaptic activity as specified by
these rules is shown in Figure 5 (from Smyth 1994). The
learning rules have the same general form for the RFs and
for the CFs. The change in synaptic strength is proportional
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Figure 5. Change in the strength of the RF and CF connections
(weight change) as a function of postsynaptic activity (output
probability). The threshold above which connection strengths are
increased is a function of prior activity (from Smyth 1994).

to presynaptic activity, but it is nonmonotonically related to
postsynaptic activity. The nonmonotonicity required is sim-
ilar to the computationally powerful BCM learning rule
proposed by Bienenstock et al. (1982), and to a simpler
version, the ABS rule, that has been shown to have biolog-
ical plausibility (Artola et al. 1990; Hancock et al. 1991a;
1991b). Other learning rules have also been developed
within this general approach, including one that maximizes
the covariance between the integrated RF and CF inputs
(Der & Smyth, in press; Smyth & Der 1995). The latter rule
may be easier to implement than the one shown in Figure 5,
but has the same overall form of dependence on the level of
postsynaptic activity, which it shares with the BCM and
ABS rules.

A major feature of the learning rule shown in Figure 5 is
the threshold of postsynaptic activity below which connec-
tion strengths are decreased and above which they are
increased. In the rules derived by Kay and Phillips this
depends upon three specific dynamic conditional averages
of prior activity, namely, the average prior output proba-
bility of the unit taken over all RF and CF inputs; the
average output probability for the current RF input taken
over all CF inputs; and the average output probability for
the current CF input taken over all RF inputs.6 Only the
first of these three is used by the BCM rule; its role is to
make it harder to increase the strengths of connections to
units that have already been active too frequently, and vice
versa.

3.4. Simulations of simple networks of local
processors with contextual guidance

3.4.1. LearningA simulation performed by Darragh Smyth
at Stirling shows how context can guide RF learning. Two
streams of single-unit processors were linked by CFs; as a
consequence, they were able to discover variables that were
correlated across streams (Fig. 6). Pairs of vertical or
horizontal bars were presented that were both vertical on
70% of occasions and both horizontal on 30% at random.
The bars were bright on dark or vice versa at random. The
signs of the vertical bars were uncorrelated across streams,

Figure 6. The architecture and stimuli used to compare the
goals of maximizing coherence across streams, that is, Coherent
Infomax, with that of maximizing information transmission within
streams, that is, Infomax. Within streams the single unit in each
processor received RF input from all nine receptors. It also
received CF input from the unit in the other stream. The stimuli
consisted of the six pairs of inputs, each being presented at random
with the probabilities shown. The sign of the horizontal bars was
not the most informative variable within streams but it was
correlated across streams.

but the signs of the horizontal bars were perfectly corre-
lated across streams. The sign of the vertical bar therefore
carries more information within streams, but the sign of the
horizontal bar is more relevant to the correlation across
streams.

The course of learning and the receptive fields found
after learning are shown in Figure 7. When the goal of
learning was specified as the maximization of information
transmission within streams, both local processors became
sensitive to the sign of the vertical bar. When the goal of
learning was specified to be the maximization of coherence
across streams, both local processors became sensitive to
the sign of the horizontal bar. The CF connection strengths
were then also learned correctly, thus embodying the cross-
stream predictions.

Other simulations show that these networks have a rich
array of possible behaviors depending upon the goal spe-
cified, the activation function used, the learning rate, the
starting weights, and the correlations within and between
the RF and CF inputs. When the goal is to maximize the RF
input that is predictably related to the context, this is done
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Figure 7. Results of the simulations using the architecture and
stimuli shown in Figure 6: Learning specified by the goal of
maximizing coherence across streams is shown on the left; that
specified by maximizing information transmission within streams
is shown on the right. Each of the four panels shows the informa-
tion transmitted (loge) by each of the two output units at different
stages of learning. The synaptic strengths produced by each form
of learning are shown at the bottom. White is positive, black is
negative, and diameter is proportional to the absolute value. Each
of the two sets of synaptic strengths is representative of what was
found in both streams.

irrespective of whether or not it maximizes transmission of
information about the RF. When the goal is to maximize
transmission of information about the RF, that is achieved
irrespective of contextual predictability. Transition be-
tween these two goals is specified by varying a single
parameter, f1, from 0 to 1.

The ability to discover the relevant RF variables and to
ignore the irrelevant has been shown when (1) the relevant
variables are the most informative within streams, when (2)
they are not the most informative within streams, and even
when (3) there is no evidence within streams as to the
existence of these particular variables (Kay & Phillips 1994;
1997; Phillips et al. 1995b; Smyth 1994; Smyth et al. 1994).
These abilities have been shown within a variety of network
architectures including networks with multiple streams and
contextual connections between streams; multistream net-
works with two layers of processing and contextual connec-
tions within streams and from higher to lower layers;
multistream networks in which the RF fields of different
streams overlap with each other; and multistream networks
with contextual connections between neighboring streams
only (Kay & Phillips 1994; 1997; Phillips et al. 1995b; Smyth
1994; Smyth et al. 1994). In all cases the correct contextual
predictions are learned together with the discovery of the
RF features that they relate. The networks learn faster with
more streams and are sensitive to small correlations be-
tween streams (Phillips et al. 1995b).

In the example shown in Figures 6 and 7, the features
that were correlated across streams were the same, that is,
the sign of a horizontal bar, and in the case of visual input
the different streams are most easily thought of as arising
from different places in the image. Neither of these aspects
is crucial, however. The features that are mutually pre-
dictable could arise from different features in different
streams, from the same cues to a common underlying
variable at different places in the image, or from different
cues to a common underlying variable at the same place in
the image; they can also include cross-modal contextual
input.

3.4.2. The codes produced by these learning rules. The
approach has been developed to include local processors
with multiple output units, as shown in Figure 8 (Floreano
et al. 1995; Kay et al., in press). Different units within a
processor adapt their RF weights in order to transmit
information about different variables, thus increasing the
amount of information that each processor can transmit.
These networks thus have four levels of organization: units,
processors, streams, and layers. Local codes were produced
for the relevant variables in the simulation shown in Figures
6 and 7, where there was little room for any other form of
coding. When more than one variable is relevant within
streams, and when multiunit processors are used, a greater
range of possible codings exists (Floreano et al. 1995; Kay et
al., in press). The codes produced vary but are not reliably
related to the input variables in any simple way. Simple
input variables are sometimes signaled by single units and

Figure 8. The architecture of the net used to study coherent
grouping. Twenty-five streams of processing with nonoverlapping
RFs were arranged as a 5 3 5 array with contextual connections
between neighboring streams as shown by the lines joining the
local processors. The enlargement on the right shows that in each
stream the processors were composed of four units, with each unit
receiving RF input from each of nine input units. Units receive CF
input from each of the units in the neighboring streams, as well as
from all other units within the same processor. Input patterns were
continuous, positive or negative, horizontal, vertical, and diagonal
lines as shown by the examples.
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Figure 9. The effects of opposing or supportive context on the
output probabilities of the four units of the local processor at
the centre of the 5 3 5 array in the architecture shown in Figure 8.
The four output probabilities are shown as increases or decreases
from the neutral level of 0.5.

sometimes they are not. In short, single units within multi-
unit processors do develop selective tuning functions; yet
these are generally not related to the input in an intuitively
obvious way, and they vary not only across streams but also
in different instances of the same network architecture and
input pattern set. However, it matters most that the rele-
vant information is transmitted; how that information is
distributed across the available output signals is not crucial.
In relation to the study of receptive field selectivity in
cortical neurons this suggests that the information con-
veyed by a population of cells may be more important than
the exact way in which it is distributed across the individual
cells, and this is consistent with the rich variation in detailed
selectivity that is often observed in cortical neurons.

3.4.3. Dynamic grouping. To show how contextual connec-
tions can produce coherent grouping, Kay et al. (in press)
simulated large arrays of multiunit processors and studied
the effects of the CF input on the short-term processing
dynamics. In one simulation, 25 streams of four-unit pro-
cessors were arranged as a 5 3 5 array, with each stream
receiving RF input from a 3 3 3 array of units. All four units
in each stream received contextual input from all units in
their neighboring streams (Fig. 8). The training input was
comprised of collinear horizontal, vertical, and diagonal
bars displayed upon the 15 x 15 input array. The learning
algorithm was set to maximize coherence across streams
(i.e., Coherent Infomax, see sect. 3.2). Learning was found
to scale up successfully to this case, with all streams tending

to discover the relevant input variables at around the same
time.

The influence of the CFs after learning can be seen in
Figure 9, which shows the effects produced on one stream
of processing by supportive or opposing activity in other
streams. The output probabilities for the four units of the
processing stream at the centre of the 5 3 5 array when
presented with a horizontal bar on its 3 3 3 receptive field
are shown for four cases: (1) when the RF input is strong,
(2) when the RF input is weak and there is no contextual
input, (3) when the RF input is weak and there is supportive
contextual input, and (4) when the RF input is weak and
there is opposing contextual input. Note that the only way
the context can influence output in this architecture is via
the contextual connections. The results show that these
contextual inputs increase the probability of outputs coher-
ently related to that context and decrease the probability of
opposing outputs. These effects are produced rapidly,
within just one or two iterations of the computations that
update the outputs.

A second simulation, run by Floreano (1994, un-
published), is analogous to demonstrations such as the
Rubin vase and the Necker cube, where two different
perceptual organizations are possible but only one occurs at
a time. Such phenomena might reflect the effects of mutual
contextual guidance in cases where the input provides
evidence for both of two internally coherent feature sets
that are mutually incompatible; in order to study the short-
term processing dynamics in such a case, a net with 100
single-unit streams was simulated. For the sake of this
demonstration, two subsets of nine units were specified so
that each had positive CF input from all other units in the
same subset and negative CF input from all of the units in
the other subset. All streams received inputs that varied
randomly across iterations with the constraint that inputs to
both subsets of nine units were positive.

The output probabilities produced at each iteration of
the computations updating the activity of the network are
shown in Figure 10. As these iterations involve just one
synaptic delay, each iteration corresponds to just a few
milliseconds. A coherent subset of features emerges from
the background within 3 or 4 iterations, but only one of the
two alternative organizations emerges at any one instant.
Within a cooperative subset, all outputs emerge from the
background simultaneously and are less affected by random
variation in their inputs than are the responses to the
background. These effects are similar to the retrieval of
memories in recurrent auto-associative attractor networks
(e.g., Amit 1989; Hopfield 1982), but with the important
difference that contextual connections just organize the
input data into coherent subsets without adding features for
which there is no evidence in the input. The short-term
dynamics of nets with contextual guidance and a feedfor-
ward RF connectivity is therefore constrained to remain
close to the input.7

3.5. Assessment of the computational studies

The simulations described above used very simple nets, but
models of large and complex nets that combine contextual
integration with many biological details show that they can
preserve the capabilities required of the short-term dy-
namics.8 As far as the contextual guidance of learning is
concerned, theoretical considerations and our own simula-
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Figure 10. Coherent grouping in a net with 100 single-unit
streams. Each unit receives just a single RF input. Two groups of
nine units, each arranged as a 3 3 3 rectangle, have positive CF
connections with all other members of their group and negative
CF connections with all members of the other group. Input and
output strengths for each unit are shown as the absolute deviation
from an output probability of 0.5; zero is black and 0.05 is white.
Outputs are calculated over 12 iterations. Input strengths vary
randomly from iteration to iteration, but the inputs to both sets of
nine units are always positive. Output probabilities increase simul-
taneously for all nine units of a group within a few iterations, but
only one group emerges from the background at a time.

tions suggest that this may become easier rather than
harder in larger systems, because more streams can provide
better guidance.

We have so far had only limited success in using the
learning rule outlined in section 3.3 to discover arbitrary
nonlinear functions in nets with two layers of feedforward
RF weights. Nets with feedback contextual guidance from
higher to lower layers can sometimes discover such func-
tions; they do so more often with more streams of process-
ing (Phillips et al. 1995b). They do not solve such problems
reliably, however; one reason for this is that when units in
higher layers compute nonlinear functions then the feed-
back predictions conflict with what the units in the inter-
mediate layers are able to compute. Others have shown that
learning by maximizing coherence across streams can dis-
cover useful higher-order functions when applied to real-
world problems (de Sa 1994a; 1994b; Stone 1996; Stone &
Bray 1995; for a review and further applications, see Becker
1996). These algorithms do seem more limited in what they
can learn than supervised algorithms such as error back-
propagation, but, as we will argue in section 6.4, this does
not necessarily make the algorithms less plausible as analo-
gies to self-organization in the cortex.

Important outcomes of these computational studies are
as follows: First, the goal of maximizing the transmission of

contextually relevant information can be specified precisely
within the framework of information theory. This can be
done despite the antithesis between information and mean-
ing that is described so clearly by Hamming (1980, p. 103),
and which has limited the usefulness of information theory
to psychology and neurobiology (Horgan 1995). The ap-
proach being developed here may therefore help extend
the application of information theory to brain function
beyond the sensory systems. Second, feature discovery and
associative learning can cooperate in such a way as to
discover variables that are predictably related across di-
verse data-sets without needing a supervisor that already
knows about those variables. Third, it is possible for the
output of a local processor to be affected by contextual
input while still transmitting unambiguous information
about the RF input. Fourth, the form of learning derived
analytically from the information-theoretic goals adds fur-
ther support to the hypothesis that changes in synaptic
strength depend nonmonotonically upon postsynaptic ac-
tivity in approximately the way proposed for the BCM and
ABS rules (Artola et al. 1990; Bienenstock et al. 1982;
Hancock et al. 1991a; 1991b).

4. Physiological evidence for contextual
integration and synchronized
population codes

Here we outline evidence for context-dependent synchro-
nization of activity in the cortex, for corticocortical contex-
tual connections that are involved in this synchronization,
and for plasticity of the receptive field and contextual field
connections. For more detailed reviews see Singer (1990;
1993; 1994; 1995) and Singer and Gray (1995).

4.1. Context-dependent synchronization

Intracolumnar interactions are shown by simultaneously
recording the activity of cells within a small region of cortex.
Synchronization of neighboring cells (, 200 mm apart) has
been observed in many different species and cortical re-
gions of awake and anaesthetized animals; it can also be
observed in the local field potential (LFP) as well as in the
multiunit and paired single-unit recordings (e.g., Gray &
Singer 1989; Gray & Viana Di Prisco 1993; Kreiter & Singer
1992; Michalski et al. 1983; Toyama et al. 1981; Ts’o et al.
1986). Synchronization of neighboring cells with overlap-
ping RFs and feature selectivity sometimes reflects com-
mon thalamic input, but it is more often characterized by
dynamic properties that can only be accounted for by
reciprocal interactions via local intracortical connections.
Overall, the evidence suggests that the activity of local
neuronal groups of cells is often closely synchronized.

Intercolumnar interactions are shown by simultaneously
recording the activity of cells in different parts of the
cortex, and synchronization has been observed between
cells that are far apart (e.g., . 2 mm). In that case it occurs
predominantly between cells with similar receptive field
selectivity, and it reduces with distance (e.g., Gray et al.
1989; Michalski et al. 1983; Schwartz & Bolz 1991; Ts’o et
al. 1986). Its occurrence within and between visual areas
depends upon whether the cells that are observed are
stimulated by single or separate objects. For example,
synchronization is strong when two cells in V1 with non-
overlapping but collinear preferred orientations are stimu-
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lated by a single long bar moving across their RFs (Gray et
al. 1989). It is weaker when they are stimulated by two
short bars moving in the same direction, and it is abolished
altogether when the two short bars move in opposite
directions. These and many other results support the view
that the synchronization of distributed activity in the visual
system implements the well established Gestalt principles
of perceptual grouping.

The prediction that cells can be part of different group-
ings at different times depending upon the stimulating
conditions has been tested in the primary visual cortex of
the cat (Engel et al. 1991b) and of the awake behaving
monkey (Kreiter & Singer 1994). These experiments show
that when two cells with different orientation and direction
preferences are stimulated by a single moving bar that is
suboptimal for both, then they synchronize, but when they
are stimulated by two separate bars, each being optimal for
one of the cells, then they do not. Synchronization occurs
within the secondary visual area MT of the awake behaving
monkey, and depends upon whether the cells are activated
by a single common stimulus or by two different stimuli
(Kreiter & Singer 1996). Synchronization has also been
observed within and between a variety of other cortical
regions, including olfactory, somatosensory, and motor re-
gions, as well as across hemispheres (Singer & Gray 1995).

4.2. Local contextual fields and their role
in synchronization

The specific thalamic afferents to primary visual cortex, V1,
provide examples of RF inputs, and the excitatory long-
range horizontal collaterals connecting pyramidal cells in
V1 with nonoverlapping RFs provide an anatomical basis
for the CF inputs (Gilbert 1995). Long-range horizontal
connections are common in V1 (Gilbert & Wiesel 1983;
1989; McGuire et al. 1991; Rockland & Lund 1983) and in
other cortical regions (Gilbert 1992), and these connec-
tions have a synchronizing action (König et al. 1993; Löwel
& Singer 1992). It has also been shown that inter-
hemispheric connections have a specific role in synchroniz-
ing activity (Engel et al. 1991a). The descending connec-
tions from higher stages may also include signals that have
a synchronizing role. Such connections are ubiquitous but
do not seem to play a primary role in driving the cells to
which they project. In accordance with this suggestion it
has been found that the activity of cells at different stages
of visual processing can be synchronized (Engel et al.
1991c), and that cells at later stages of processing in the
visual system can synchronize the activity of relevant sub-
sets of cells at earlier stages of processing (Bullier et al.
1992; Sillito et al. 1994).

The anatomical and physiological evidence therefore
suggests that the contextual connections within and be-
tween regions of the visual cortex are organized as shown
in Figure 11. These connections are not distinguished
solely by their source, but also by the effect that they have
on the processors to which they project, because they have
a modulatory rather than a primary driving role. One way
in which they could fulfill this role is through voltage-
gated receptors. Synaptic receptors that are both ligand
and voltage-gated have become known as NMDA recep-
tors, and they are widely distributed on pyramidal cells
throughout the cortex. These receptors provide a mecha-

Figure 11. Organization of the synchronizing connections be-
tween (A) and within (B) regions of the visual cortex (Singer
1996). RF connections are shown as solid lines; synchronizing
connections are shown as grey lines in (A) and as dotted lines in
(B). (A) shows feedforward RF connections projecting from the
lateral geniculate nucleus (LGN) to primary and secondary visual
cortex (V1 and V2) and then on to other visual areas. CF connec-
tions link areas occupying the same level in the processing hier-
archy; they are also included in the descending back-projections
from higher to lower processing stages. (B) shows three process-
ing columns within V1, two tuned to horizontal contours (Col-
umns I and III), and one to vertical contours (Column II).
Ganglion cells in the retina converge appropriately onto cells in
Layer IV of the cortex after relay through the LGN in the
thalamus. The output of the orientation selective layer IV cells is
then relayed to pyramidal cells in other layers of V1, and these in
turn project to higher stages of processing as indicated in (A). CF
connections originate from pyramidal cells and link columns with
the same or similar orientation specificity, here Columns I and
III. Of these intraregional CF connections, about 80% terminate
directly on pyramidal cells, and therefore provide excitatory in-
put. The remaining 20% terminate on inhibitory interneurons
(shown here as filled circles) which in turn synapse on pyramidal
cells. Note that this wiring diagram shows only the essentials of
the CF connections linking processors within a cortical area,
omitting much sophisticated intracortical circuitry.

nism for voltage dependence because there is a magnesium
block on them that is reduced by depolarizing the cell (e.g.,
Ascher et al. 1988). These channels therefore contribute
more effectively to further depolarization when the cell is
already partially depolarized; they thereby provide a mech-
anism for gain control. Fox et al. (1990) show that cells in cat
visual cortex have one class of receptor channel that pro-
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vides the primary drive and summates linearly, and a second
class that provides amplifying gain-control (see Fox & Daw,
1992, for computational studies of possible mechanisms for
these effects). If the long-range horizontal collaterals do
provide synchronizing contextual input as hypothesized
here, then their synaptic inputs should be predominantly
modulatory rather than driving. The available evidence
suggests that this is so (e.g., Hirsch & Gilbert 1991).
Furthermore, if these long-ranging intraregional connec-
tions did contribute to the structure of the receptive field
proper, then the receptive fields of cortical neurons would
be much larger and more broadly tuned than they actually
are.

Note that the hypotheses developed here do not imply
that all voltage-dependent channels mediate CF rather
than RF inputs. If any such distinction is relevant to cortex
it is more likely that RF inputs produce strong activation of
both voltage-dependent and non-voltage-dependent chan-
nels (Armstrong-James et al. 1993), whereas CF inputs
produce strong activation only of voltage dependent chan-
nels. Note also that the absolute division of inputs into
either RFs or CFs is a simplifying idealization. In cortex
individual inputs may contribute to both roles but to varying
degrees. Furthermore, there is evidence that although the
long-range horizontal input is usually modulatory it can
become more effective in generating spiking activity itself
when the primary RF input is removed for many weeks
(Das & Gilbert 1995).

4.3 Plasticity of the receptive field connections

It is now well established that the activity-dependent self-
organization of synaptic connections could provide a sub-
strate for learning in the cortex (Singer 1987; 1990). This is
likely to involve long-term potentiation (LTP) and long-
term depression (LTD), as well as control by global gating
systems, and it applies to mature as well as to developing
cortex (Singer & Artola 1994).

The learning rules formally derived from the information-
theoretic objectives in section 3 require synaptic strength
on active inputs to remain unchanged when postsynaptic
activity is very low, to decrease when it is at intermediate
levels, and to increase when it is high. The plasticity
observed in slices of adult rat neocortex by Artola et al.
(1990) supports these three specific predictions. Further-
more, it has been shown that much of the data on activity-
dependent self-organization in the visual cortex can be
explained by the BCM learning rule (Clothiaux et al. 1991),
which makes the same three predictions.

Given the contextual input to local processors the possi-
bility arises for this input to affect RF learning. Indeed, it is
unlikely to have no effect, and we have argued above that it
could have effects with far-reaching computational conse-
quences. We know of no empirical studies explicitly de-
signed to explore these possibilities, but results reported by
Gilbert and Wiesel (1990) may be relevant. Their studies
were mostly concerned with the effects of concurrent
context upon the response to RF stimulation. Such effects
could therefore be due to context modulating postsynaptic
activity, but without having any effects upon the strengths
of the synapses that carry RF input. However, it was also
observed that, under some conditions, prior contextual
stimulation altered the orientation tuning function that was
later obtained in response to RF stimulation alone. This

suggests that the prior contextual stimulation played a role
in changing the strengths of RF synapses, but as it could
also have been due to other adaptation effects, studies using
a modification of their paradigm to address this issue more
directly would be worthwhile.

4.4. Plasticity of the contextual field connections

Although the basic organization of the CF connections
could be genetically specified, shaping by experience is also
necessary because RF feature selectivity depends upon
experience. In keeping with this it has been shown that
long-range horizontal collaterals undergo activity-dependent
changes in synaptic strength (Hirsch & Gilbert 1993; Löwel
& Singer 1992). Furthermore, there is evidence that the
selection of these connections follows a correlation rule
establishing preferential coupling between cells exhibiting
correlated activity (Löwel & Singer 1992), in agreement
with the predictive role proposed here for the CF connec-
tions. These ensemble-forming connections remain sus-
ceptible to use-dependent modifications in the adult
(Singer & Artola 1994). Indeed, most of the experiments
demonstrating LTP and LTD in neocortical synapses have
been performed on corticocortical connections terminating
on pyramidal cells in layers II/III or V (Artola & Singer
1993; Singer 1995), so they could predominantly reflect the
plasticity of CF connections.

5. Psychological implications and evidence

This section shows how our hypotheses concerning local
contextual integration can be tested and developed by
behavioral methods, including cases where these are com-
bined with physiological methods. We will argue that: (1)
studies of the detection and grouping of simple stimulus
elements provide behavioral evidence for contextual inte-
gration of the kind we propose; (2) it is reasonable to search
for such processes at the higher levels of cognition, such as
the perception of objects and words, because they are
implemented by mechanisms that are widely distributed
and of general utility; and (3) there is already theoretical
and empirical support for the view that contextual integra-
tion at the level of local processors is relevant to these
higher levels of cognition.

Our focus is on the visual perception of simple line
element displays and on the perception of words. Theories
using contextual integration and synchronization have been
applied to a wide variety of other tasks with psychological
relevance, however. Examples include the cocktail-party
problem (von der Malsburg & Schneider 1986), perceptual
grouping within and between multiple visual feature do-
mains (Eckhorn et al. 1991a; Schillen & König 1994; Tononi
et al. 1992b; Wang et al. 1990), form from motion and
motion capture (Tononi et al. 1992b), object recognition
(Hummel & Biederman 1992; Neven & Aertsen 1992;
Tononi et al. 1992b), selective attention and scene percep-
tion (Goebel 1993), the binding of events across widely
distributed cortical zones (Damasio 1989), reasoning (Shas-
tri & Ajjanagadde 1993), and consciousness (Crick & Koch
1990). Although these theories differ in detail they all
suggest ways in which contextual integration at the level of
local circuits can produce useful cognitive capabilities.
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5.1. The effects of strabismus on synchronization
and behavior

If synchronization is relevant to behavior then stimuli
should be more perceptible if they produce synchronized
activity, and conditions that reduce synchronization should
impair perception. These predictions have been tested by
comparing the effects of induced strabismus (squint) in cats
on both synchronization and behavior. In strabismic cats
neurons driven by different eyes lose the long-range hori-
zontal intracortical connections that initially connect them
(Löwel & Singer 1992). As a consequence these neurons do
not synchronize, and the cats cannot fuse images from the
two eyes (König et al. 1993). Furthermore, strabismus often
leads to impaired perception in one eye (amblyopia), but
the cortical activity evoked by input to that eye has so far
seemed to be normal. The discrimination of gratings by cats
using either their normal or their amblyopic eye has now
been shown to be closely related to the extent to which the
gratings produce synchronized activity (Engel et al. 1994;
König et al. 1994; Roelfsma 1994a; 1994b). Both discrimi-
nation and synchronization are reduced in the amblyopic
eye, and in both cases this reduction is greater at higher
spatial frequencies. Recordings from the primary visual
cortex of awake strabismic cats show that the amount of
synchronization is directly related to perception and motor
control. Under conditions of stimulation that lead to binoc-
ular rivalry, neurons connected to the eye that dominates
perception and oculomotor response show increased syn-
chronization and neurons connected to the suppressed
eye show decreased synchronization (Fries et al. 1996).
Changes in perceptual dominance are unrelated to changes
in firing rate, however. These results show that response
selection is closely related to synchronization; they thus
support the view that internal grouping through synchro-
nization on a fine time scale is important for the selection of
perceptually or behaviorally relevant signals.

5.2. Contour integration in human vision through local
“association” fields

Psychophysical evidence for dynamic grouping through a
network of local linking connections between feature de-
tectors is reported by Field et al. (1993). Subjects were
shown arrays of 256 oriented band-pass line elements
(Gabor patches) and had to detect a path of 12 elements
with gradually changing orientation that was embedded
within the random background. They found that perfor-
mance was impaired by increases in the distance between
the line elements and with the deviation of their orienta-
tions from collinearity, but it did not depend upon their
relative “phases” (i.e., black on white or vice versa). Field et
al. (1993) conclude that the ability to detect such paths is
due to local “association” fields that link feature detectors in
an organized way that depends upon their relative RF
selectivities (Fig. 12). Their results show that these connec-
tions link feature detectors over distances that are large
compared with the sizes of their receptive fields, and do so
in such a way as to implement Gestalt grouping principles
of proximity and continuity.

The dynamic grouping observed by Field et al. (1993)
supports the hypothesis of locally specific processes of
integration, and the “association” fields they infer from
their findings are much the same as the CFs we propose.
Field et al. (1993) note the similarities between the condi-

Figure 12. (a) Local contextual, or “association,” fields as in-
ferred from psychophysical studies of contour integration in hu-
man vision (Field et al. 1993): the square patches stand for
oriented RFs at a particular spatial scale and in the relative
positions shown. A sample of the contextual fields through which
the output of cell a can be grouped with the outputs of other cells is
shown. The arrows on the left show that they connect cells whose
preferred orientations form first-order curves, with a strength that
reduces with deviation from collinearity. Cell a will therefore not
be connected to cells whose RFs have orientations and positions as
shown on the right. This joint dependance on orientation and
position is similar to that for the synchronizing connections shown
in Figure 11. (b) An illustration of the perceptual effects assumed
to arise from such contextual grouping connections. A long
upward-facing curve can be seen running through the whole array.
In this example, element a is more likely to be seen as being
grouped with b than with c, even though it could equally well be
paired with either on the basis of the pairwise connections. Such
grouping processes may involve cooperative population effects,
but an additional possibility is that the activity of cells operating at
spatial scales that distinguish the individual elements is grouped
by contextual inputs from cells that operate at a coarser scale and
detect the long curve without distinguishing its elements.

tions under which they find good perceptual grouping and
the conditions producing synchronization in V1. They also
note that these conditions seem well matched to those
determining the extent to which pyramidal cells are linked
by long-range horizontal collaterals. These similarities are
further strengthened by detailed comparisons between
perceptual grouping criteria and the anatomy of the tan-
gential intracortical connections which show them to be
closely matched (Schmidt et al. 1997).

Finally, Field et al. (1993) argue that detection of the
path in their studies must have been mediated by the
grouped activity of the set of detectors activated rather than
by the activity of a single high-level detector because a new
path was formed randomly on each trial, and because the
bandpass nature of the stimuli precluded their detection by
cells with classically defined RFs covering the whole of the
path. This argument is relevant to the issue of the relative



Phillips & Singer: Cortical computation

BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4 675

roles of local and distributed codes to which we will return
below.

5.3. Effects of local context on the detection
of low-contrast line elements

The psychophysical evidence just discussed provides evi-
dence for local contextual fields in the grouping of easily
detected stimuli. If such fields exist then they could also
mediate locally specific effects of context on the detection
of faint or ambiguous stimuli. Several psychophysical exper-
iments indicate that this is so (Polat & Sagi 1993; 1994a;
1994b). Such studies show that targets are surrounded by a
small region within which additional stimuli suppress target
detection, and then by a larger region within which they
facilitate detection provided that they are coherently re-
lated to the target such as by being collinear or near
collinear. They thus suggest that within local streams of
processing, inhibitory mechanisms force a choice between
alternative features, whereas between streams, contextual
interactions facilitate the detection of coherent features.

A detailed comparison of psychophysical and physiologi-
cal evidence for such facilitatory effects of context on the
detection of target elements is reported by Kapadia et al.
(1995). They show that human visual contrast sensitivity is
improved by a neighboring suprathreshold line element in a
way that is reduced by increases in their spatial separation
and with the deviation of their orientation selectivities from
collinearity. Using equivalent stimuli in electrophysiologi-
cal studies, Kapadia et al. (1995) also show that the response
of superficial layer complex cells to low-contrast stimuli in
V1 of awake attending Rhesus monkeys, as measured by
summing spikes over 200 msec, depends upon the local
relations between target and context in a way that is very
similar to that seen in the psychophysical experiments. The
physiological experiments also showed that these effects
were not due to the context encroaching within the RF of
the recorded cell, but were due to modulatory interactions
between cells with nonoverlapping RFs.

5.4. Common contextual interactions revealed
by psychophysical, physiological,
and anatomical methods

The contextual conditions producing enhanced detection
of low contrast stimuli in both the psychophysical and the
electrophysiological studies of Kapadia et al. (1995) are very
similar to those producing grouping of high-contrast stimuli
in the psychophysical studies of Field et al. (1993) and
synchronization in electrophysiological studies (e.g., Singer
& Gray 1995). All four sets of findings show similar effects
of spatial separation, spatial frequency, orientation, and
collinearity. They may therefore be of great importance in
reflecting common underlying mechanisms for local con-
textual integration. This view is strengthened further by
their close match to the anatomy of long-range horizontal
collaterals (e.g., Schmidt et al. 1997). If such mechanisms
indeed do exist then they will provide an obvious candidate
for explaining many other locally specific effects of context.
The hypothesis that grouping and contextual facilitation of
element perception involve common processes will be
discussed further in section 5.7.2 in relation to theoretical
and experimental studies of contextual integration in word
perception.

5.5. Contextual modulation by variables
that cannot themselves be perceived

One of our main hypotheses is that context can modulate
the transmission of information about something other than
the context. Thus, if some input variable is used only for
contextual guidance then no explicit information will be
transmitted about that variable in its own right.

5.5.1. Modulation by implicit color boundaries in achro-
motopsic patients. A dramatic demonstration of this possi-
bility comes from two neuropsychological patients who no
longer see the world in color but only in black and white.
The first, HJA, has been studied for many years (Hum-
phreys & Riddoch 1987), but it has now been discovered
that color does have implicit influences on his detection of
luminance contrasts (Humphreys et al. 1992). In one task
he had to say whether the top and bottom halves of a
rectangular display differed in the second or the first of two
intervals. Sometimes the two halves differed only in lumi-
nance, sometimes only in color, and sometimes in both.
When the color difference was presented without any
luminance difference, performance was at chance. This
shows his achromotopsia. When the two halves differed
only in luminance, performance improved as luminance
contrast increased. When a color difference was added,
performance improved more rapidly than it did with the
luminance contrasts on their own. The second patient,
WM, was also tested on these tasks, and was compared in
detail with HJA on a variety of other tasks. He has a
different form of achromotopsia, but shows the same kind
of implicit modulatory effects of color differences upon the
detection of luminance differences (Troscianko et al. 1993;
1996).

A simple interpretation of these results is that, in these
patients, color streams continue to modulate luminance
streams, but with their own feedforward outputs no longer
functioning properly. Color differences can therefore still
influence the detection of luminance differences, but with-
out themselves being perceived. Color differences may
influence the detection of luminance differences because
they are highly correlated in natural visual images, and this
is reflected in the connectivity between color and lumi-
nance channels. The correlations are not used to conflate
the two variables, however, but to provide contextual guid-
ance. Further evidence for facilitatory effects of color can
also be found in psychophysical studies of normal subjects
(Gur & Akri 1992; Troscianko 1994). The above findings
therefore illustrate a key difference between RFs and CFs.
Outputs are “seen” by later stages of processing not as
conveying information about the CF input, in this case
color, but as conveying information about the RF input, in
this case luminance. The introspective reports of the two
patients described above suggest that in this case those later
stages involve conscious awareness.

5.5.2. Modulation by implicit context in visual texture
segregation by normal subjects. To show how analogous
effects can be sought using normal subjects we outline
experiments that are currently being run at Stirling by
Craven et al. on the interaction of target and contextual
cues to texture segregation. A 20 3 20 array of small line
elements, divided into two halves differing in mean line
length, is displayed for 1 sec, and Ss decide whether the
display is divided into long and short elements by a vertical
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or a horizontal boundary. Contextual input is provided by
also dividing the array into two halves that differ in the
mean orientation of the elements. This boundary is coinci-
dent with the length boundary on 70% of trials and is
orthogonal to it on 30%. If modulatory interactions are
occurring then (1) the effect of context will increase as
target strength increases; (2) this will occur just for a low
range of target strengths; and (3) this range will be at higher
values of target strength for weak than for strong contexts
(Smyth et al. 1996).9 We also predict that the perception of
the target boundary will be facilitated by a context with
which it is coherent. Results obtained so far support these
predictions and include modulatory effects of weak contex-
tual cues that have no direct influence on response them-
selves.

5.6. Psychophysical evidence for RF and CF plasticity
in sensory systems

Until the early 1980s plasticity in sensory systems was
widely thought to be restricted to a critical period during
development. There is now abundant anatomical, physi-
ological, and psychophysical evidence for such plasticity in
adults. Plasticity has been shown in visual, auditory, somes-
thetic, and motor systems. It is particularly dramatic at the
cortical level and has been shown by studies of reorganiza-
tion following deafferentation, nerve section, and cortical
lesions, and from studies of the effects of more subtle
changes in the patterns of sensory input received (Gilbert
1995; Kaas 1995). These effects occur on various time
scales and include psychophysical evidence for fast percep-
tual learning in the visual sensory system of adult humans
(e.g., Karni & Sagi 1991; Poggio et al. 1992; Polat & Sagi
1994b). These psychophysical effects are interpreted as
being due to changes at sensory stages of processing be-
cause they are specific for eye, orientation, and spatial
frequency, as well as for spatial position.

Some of these findings can be interpreted as changes in
feedforward RF selectivity, such as when major reorganiza-
tions of sensory or motor maps occur. In other cases they
are more likely to involve changes in the connections
mediating intracortical contextual integration (Gilbert
1995). Consider the psychophysical findings reported by
Polat and Sagi (1994b): prior to practice, the spatial range
within which contextual stimuli facilitate target detection is
up to about six times the spatial period of the target (Polat &
Sagi 1993). After a few hours of practice, covering the
whole range of separations to be spanned, the range of
facilitation was increased by at least a factor of three (Polat
& Sagi 1994b), probably by strengthening chains of local
facilitatory interactions between filters with nearby but
nonoverlapping RFs.

There are also other ways in which psychophysical exper-
iments could study the learning of contextual predictions.
For example, consider the techniques for studying local
contextual integration described in sections 5.2, 5.3, and
5.5.2. Each of these could be used in paradigms where the
predictive relationships between context and target are
manipulated to see whether the effects of local context
depend upon experience. There are already some findings
suggesting that such studies would be worthwhile, for
example, (1) the effects of strabismus outlined above
show that experience affects both the CF connections and
the probability of synchronization; (2) further studies of the

achromotopsic patient WM suggest that the color-
luminance interactions adapt to correlations that are exper-
imentally induced between them (Troscianko et al. 1995);
and (3) there are large practice effects in the texture
segregation task outlined in section 5.5.2.

An example of the effect of learning on cross-modal
integration is provided by Durgin (1995) who presented
random dot patterns that had a greater dot density on either
the left or the right. A tone was presented simultaneously
and its pitch was perfectly correlated with the side of
greater density. After 180 such pairings, a staircase proce-
dure was used to measure perceived equivalence between
left and right at an intermediate density. Simultaneous
presentation of a tone affected matching such that the side
that had been denser when that tone was presented during
training was seen as being denser than it should have been
in order to give an accurate match. The extent to which such
cross-modal contextual learning affects discrimination
within modalities when later tested in the absence of the
cross-modal stimulus is not yet clear, but it is clearly
amenable to further psychophysical study. Physiological
evidence for effects of auditory stimulation on activity in
the visual cortex (e.g., Fishman & Michael 1973; Spinelli et
al. 1968) encourages such experiments. Psychophysical
studies of learned cross-modal effects upon grouping would
be of particular interest given the evidence suggesting that
contextual interactions play a major role in grouping.

In sum, there are large effects of learning in both mature
and immature sensory systems. These effects often include
changes in RF connectivity, but changes in CF connectivity
are also likely, as expected on the grounds that the contex-
tual predictions would otherwise be invalidated by RF
changes. Finally, psychophysical experiments designed spe-
cifically to study changes in contextual integration due to
learning are both possible and worthwhile.

5.7. Local contextual integration in the perception
of objects and words

5.7.1. Dynamic grouping in the perception of objects.
Ways in which binding through synchronization could help
produce object recognition performance similar to that of
humans has already been discussed in detail elsewhere
(e.g., Hummel & Biederman 1992; Mozer et al. 1992), so
we restrict ourselves to a brief outline. One central idea is
that shape recognition could generalize well across irrele-
vant dimensions, such as position, if shape descriptors are
insensitive to those dimensions. Synchronization is used to
bind shapes to positions in order to show what shapes are
where. The Hummel and Biederman (1992) model has
seven layers through which image features are combined
into parts, and then into structural descriptions of objects in
terms of their parts and relationships. Synchronization is
used to group image features into volumetric parts, and to
bind parts to relationships, and is achieved through a
network of fast enabling links that are similar to our CFs.
Crucial aspects of human performance displayed by the
model include recognition that generalizes well across
position, size, left–right reflection, and rotation in depth,
but poorly across rotation in the picture plane. Goebel
(1993) developed a similar model that has more flexible
synchronizing connections and which also incorporates
mechanisms that produce performance consistent with
psychophysical evidence for selective spatial attention. As
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in human performance, such systems are highly dependent
upon internal grouping processes so that the same image
grouped in different ways can give rise to very different
outputs. These demonstrations of computational feasibility
and similarity to human performance are encouraging, but
direct tests of the hypothesis that timing on a fast time scale
is important for grouping in object perception are also
needed, and this is a major goal for further research.

5.7.2. Contextual integration in the perception of words.
Word perception is a major focus for studies of contextual
integration within cognitive psychology, so here we discuss
several ways in which the two areas of research can be
related. We note similarities between context effects in
word perception and in the perception of simple line
elements; we conclude that as the latter can be studied by
both psychophysical and physiological methods, this may
bring a rich new source of evidence to bear on cognitive
conceptions of contextual integration. We relate this to
dynamic grouping and to synchronized population codes,
and outline neuropsychological evidence for such codes in
word perception. Finally, we note a possible role for contex-
tual guidance in learning to perceive words.

Various paradigms have shown that both letter and
phoneme perception depend upon local context. Cattell
(1886) showed that letters are recognized more accurately
in the context of a familiar word. The many subsequent
studies of such phenomena include demonstrations that
forced-choice discrimination between a pair of pre-
specified letters is better if the test letter appears within the
context of a familiar word or pronounceable nonword (e.g.,
Johnston & McClelland 1973; Reicher 1969; Rumelhart &
McClelland 1982). Strong effects of local context also occur
within speech perception. For example, Massaro and
Cohen (1983) presented computer generated syllables such
as /sli/, /tri/, /sri/, and /tli/, to subjects and asked them to
classify the middle phoneme as an /l/ or an /r/. This
phoneme was presented at seven different levels on a
continuum from being very /l/-like to being very /r/-like by
varying the frequency from which the third formant (F3)
began at the phoneme’s onset. Each was factorially com-
bined with one of four different leading consonants, /s/, /t/,
/p/, and /v/. Perception of the central phoneme was pre-
dominantly determined by the direct acoustic cue to that
phoneme as given by F3 frequency, but it was also affected
by the preceding consonant, particularly when the direct
cue was most ambiguous. Similar effects have been shown
in studies of reading. For example, when an ambiguous
lower-case letter that can be read as either an e or a c is
placed in contexts that support one or the other alternative
then identification is biased towards the contextually appro-
priate alternative (Massaro 1979).

These effects are similar to those in the perception of
simple line elements displays (e.g., Kapadia et al. 1995;
Polat & Sagi 1993, 1994a; 1994b) in several ways. Although
they occur at a higher level of analysis, context effects in
word perception also occur rapidly and automatically. The
effects are locally specific in that they depend upon the
particular properties of the entities that are interacting. For
example, the context /s/?/i/ supports some target letters
and not others, just as the context of two collinear oriented
line elements supports some intervening oriented line
elements and not others. Furthermore, in both cases the
interactions are such as to emphasize things that are ex-

pected in that context, rather than things that are unex-
pected. In both domains the effects of context on the
perception of individual elements seem to be greatest when
the direct stimulus evidence is most ambiguous. Yet an-
other similarity is that contextual interactions in both do-
mains are affected by learning. Finally, there are effects of
object-specific knowledge on the detection of line seg-
ments (e.g., McClelland 1978; Weisstein & Harris 1974)
that may be analogous to the effects of word-specific
knowledge on the forced-choice discrimination between
letters. At present there seems to be enough similarity,
therefore, to justify the search for a common explanation
for these various effects of context.

Theories of contextual interaction in word perception
have been undergoing vigorous development for many
years and can now account for many details of performance
with impressive precision (e.g., Massaro 1989a; McClelland
& Elman 1986; McClelland & Rumelhart 1981; Richman &
Simon 1989; Rumelhart & McClelland 1982). The problem
is not that no explanation is available but that each of several
diverse theories can fit the data so well that it is difficult to
know what inferences to draw. Thus we need to find
common elements, or fundamental mechanisms, that may
appear in different forms in the different theories and
which are crucial to the cognitive functions with which they
are concerned (Richman & Simon 1989). As the theories all
aim at generality, one way to do this is to widen the range of
phenomena to which they are applied, including psycho-
logical tasks that can be related to known physiological
mechanisms if possible. It is particularly appropriate to
relate Interactive Activation and Competition (IAC) theo-
ries (e.g., McClelland & Rumelhart 1981) to anatomy and
physiology because they explicitly use a neural style of
computation and played a major role in promoting the use
of that style in cognitive theory. Basic aspects of these
models that are broadly compatible with what is known
about cortical physiology include: having just a few differ-
ent levels of analysis; having many replications of pro-
cessors spanning feature space at different input positions
within a level; and having local inhibitory relations to force a
choice between incompatible alternatives within levels. For
further in-depth discussions of these theories and related
issues, see McClelland (1991), Massaro and Cohen (1991),
and Movellan and McClelland (1995).

We now discuss five major unresolved issues from the
perspective of our general approach and of the analogy
between context effects in the perception of words and of
simple line elements: (1) What is the architecture of infor-
mation flow, and in particular to what extent do the effects
of context depend upon the feedback of information from
higher to lower levels of analysis? (2) How does contextual
information affect processing, and in particular does it do so
in essentially the same way as direct evidence from the
target? (3) Do the mechanisms producing the effects of
context on the perception of ambiguous or just detectable
stimulus elements also play a role in dynamically grouping
those elements? (4) To what extent does each level use local
as opposed to population codes for those entities with
which it is concerned? (5) Is the goal of maximizing coher-
ence between distinct streams of processing relevant to
learning within streams?10

1. What is the architecture of information flow, and in
particular to what extent do the effects of context depend
upon the feedback of information from higher to lower
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levels of analysis? The detailed properties of context effects
in the perception of line elements strongly suggest that they
are due in part to long-range horizontal collaterals that
directly link distinct entities within the same level of anal-
ysis (e.g., Kapadia et al. 1995; Singer 1995). If there are
connections that are specialized to mediate contextual
interactions within the segmental (i.e., phonemic or letter)
levels of word perception, for example, then this could
contribute to the superiority of regular over irregular non-
words and may help explain some of the more rapidly
occurring components of contextual interaction. Contex-
tual connections within segmental levels may not be the
best way to explain the effects of word-specific knowledge,
however, and these are often assumed to involve activity at a
higher level of analysis that is specialized to distinguish
words. The question that then arises is whether activity at
this level influences processing at the segmental levels. This
issue is unresolved but an analogous issue can be studied at
lower levels of visual processing using physiological tech-
niques. Studies of the role of feedback from V1 to LGN
provide evidence that it synchronizes the firing of those
LGN cells that combine to form higher level entities in V1
(Sillito et al. 1994). This suggests that higher levels do
influence processing at lower levels but in a way that is
distinct from the ascending RF input and more like the
process of contextual integration within levels. As feedback
connections are ubiquitous within the cortex, this could be
a general feature of cortical processing, so it would be
worthwhile obtaining further evidence on it by combining
psychophysical measures with electrophysiological mea-
sures in V1 as in Kapadia et al. (1995), but measuring both
rate and relative timing in multiple single unit recordings,
and using stimulus elements that either do or do not
combine together to form a single familiar entity at a higher
level. The possibility that a major role of feedback is to
group activity at lower levels will be examined further
under point 3 below, which discusses grouping processes in
word perception.

2. How does contextual information affect processing,
and in particular does it do so in essentially the same way as
direct evidence from the target? If not then contextual
integration is not a fundamental issue within that domain.
Note that as contextual interactions may be reciprocal the
question is not whether some parts of a word are processed
just as targets and others just as contexts, but whether
words are composed of distinct but interacting parts such
that the processes by which they interact differ from those
by which they are kept distinct.

One of the clearest ways of distinguishing between
contextual and direct stimulus effects in word perception is
that it is the direct stimulus input and not the context that
determines the alternatives between which choice is made;
that is, context influences the choice between those com-
peting alternatives for which there is direct but ambiguous
stimulus support.11 As evidence for this view Massaro
(1989b) notes that context does not by itself produce the
phoneme restoration effect (Warren 1970) because some
bottom-up support for the presence of a missing phoneme
is required, even if only in the form of a brief noise burst.
This possible asymmetry in the roles of context and target is
not apparent in the experiment of Massaro and Cohen
(1983) because target support was always available. It
should therefore be possible to make it more apparent by
presenting stimuli such as /li/, /ri/, /si/, /ti/, /sli/, and /tri/

with various levels of ambiguity for the /l/ or /r/ phoneme
and asking subjects to decide whether an /l/ or /r/ or
neither is present. The distinction proposed here predicts
that context will have a large effect in the presence of an
ambiguous target while having little or no effect in its
absence. In contrast, the direct stimulus cues should have
large effects whether the context is present or not. Such a
result would not be surprising but it would show how the
asymmetry in the roles of RFs and CFs can be reflected in
performance. Furthermore, this asymmetry in dependence
would contrast with the various ways in which information
from different sources can be combined such that they all
influence decision in essentially the same way (e.g. Massaro
& Friedman 1990), as do different sources of information
from within the RF. An important aspect of this latter form
of combination is that although the different sources may
be independent prior to combination, their individual con-
tributions are not kept distinct in the output decisions
produced. Thus, in contrast with the effects of CF inputs,
all RF inputs help determine the meaning of the decisions
to which they contribute.

The distinction between the roles of RFs and CFs may
also be relevant to the long-running debate between theo-
ries that emphasize the use of internal knowledge to go
beyond the input from external stimuli and theories that
emphasize remaining faithful to that input so as to avoid
hallucination. The latter danger is often noted in discus-
sions of the effects of context in word perception (e.g.,
Massaro 1989a; Massaro & Cohen 1991) and can be used as
an argument for assuming that context and target do not
interact. If context has distinct effects upon processing,
then instead of having to choose between avoiding hallu-
cinations and allowing contextual interaction we can have
both, including direct contextual interactions within levels,
which might otherwise overwhelm stimulus processing
with hallucination.

3. Do the mechanisms producing the effects of context on
the perception of ambiguous or just detectable stimulus
elements also play a role in dynamically grouping those
elements? Sections 5.2 and 5.3 outlined evidence suggest-
ing that for simple line element displays the grouping of
elements into coherent wholes depends upon the same
knowledge embodied in the same mechanisms as do the
effects of context on the perception of the individual
elements. If this is so and if contextual integration is
achieved in the same way in different regions, then it will
also apply to word perception. We take it for granted that
grouping processes are a crucial part of word perception at
both lexical and sublexical levels, and this is easily demon-
strated. At the lexical level, for example:

thismustbegroupeddynamicallyusingknowledgeofspecific-
words.

Internal grouping processes also occur at sublexical levels.
PIGHAM, for example, will be pronounced either with or
without consonants in the middle depending upon whether
or not IGH is grouped to form one grapheme. If grouping is
computed dynamically, as it must be if it is signaled by
relative timing, then such groupings could change rapidly
from moment to moment, thus making various possible
alternative groupings successively available. Studies of a
neurological patient, who will be discussed further below,
illustrate the relevance of such dynamic grouping processes
to word perception. She was quite unable to read PIGHAM
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as a single unfamiliar nonword but could read it easily when
she saw it as two familiar words (Goodall & Phillips 1994).
She made it clear in various ways (e.g., by drawing a pencil
line between the appropriate letters) that this involved
feedback of grouping information from a lexical level to a
level containing a precise topographic map of the individual
letters.

There is also evidence from normal subjects that the
effects of word familiarity on perception involve internal
grouping processes. For example, familiarity reduces asym-
metrical left-to-right letter position effects that can be
explained as being due to processing letters separately in
unfamiliar stimuli (Phillips 1971). Many other effects can
also be explained as being due to processing familiar items
as a single coherent whole, or “chunk,” but processing
unfamiliar items as a number of separate chunks (Richman
& Simon 1989).

One implication of these considerations is that in order to
understand the role of feedback in word perception it may
be worthwhile emphasizing tasks that reveal the effects of
grouping processes. For example, if grouping and disam-
biguating involve a common mechanism then disambiguat-
ing interactions between elements should depend upon
whether those elements are grouped together or not. Con-
sider the disambiguating effects of local context in the
experiments of Massaro and Cohen (1983), for example. In
those experiments the phonemes that interacted were
always part of a single word. If more than one word were
presented then it would be possible to test whether or not
the interaction between neighboring phonemes depends
upon their being perceived as parts of the same word or
phrase.

4. To what extent does each level use local as opposed to
population codes for those entities with which it is con-
cerned? A fundamental difference between these two pos-
sibilities is that population codes can transmit information
about inner structure but local codes cannot. This differ-
ence was used to provide evidence on this issue by studies
of two neuropsychological patients whose ability to read
and write is very largely restricted to words with which they
are familiar (Goodall 1994; Goodall & Phillips 1994; Phil-
lips & Goodall 1994). Their reading and writing therefore
provides a direct window on the contribution of lexical
knowledge when isolated from sublexical processes that
treat the input as a string of separate letters or phonemes.
Several experiments were run with the general format of
giving the patients visual discrimination training on a set of
nonwords and then testing their ability to write those
nonwords to dictation as compared with matched but
unfamiliar nonwords.12 These experiments show that the
patients can write visually familiar nonwords to dictation
accurately and fluently on first hearing them spoken aloud
even though they have never written them before and
cannot write any of the unfamiliar nonwords. This is a
surprising result for theories proposing that the role of word
recognition is to produce a local code that indicates which
word has been recognized, because that cannot explain how
familiarity makes a description of internal structure avail-
able for matching with input from other modalities and for
generating appropriately structured output. These results
do not show that local codes do not exist for familiar words,
but they cannot be explained by proposing such codes.13

Furthermore, if the output of word recognition systems is a
structured description then this could help explain how

output lexicons could obtain knowledge of word structure.
If it is assumed that they just receive local codes from input
lexicons and then generate the appropriately structured
output then it is not obvious how they acquire knowledge of
those structures.

These findings therefore support theories that use dis-
tributed or population codes for familiar words, but other
evidence outlined above suggests that they are processed as
single whole items or chunks. How can these two conclu-
sions be reconciled? If familiar words are given a local code
then we have difficulty explaining the transmission of
information about their structure. If we assume that they
are given a classical distributed code then we have difficulty
explaining the effects of familiarity adequately, because
such codes can transmit descriptions of novel items as well
as of familiar items.14 Theories using distributed codes that
are formed by internal grouping processes may be able to
overcome both difficulties because then the way in which
elements of a distributed pattern of activity are combined
depends upon internal grouping processes that embody
knowledge of familiar or coherent combinations. This as-
sumes a highly distributed input to all stages of cortical
processing, and emphasizes the importance of being able to
separate that input into distinct subsets on the basis of their
internal coherence. It also suggests the possibility that
information that is conveyed as a number of separate
groupings at one level or stage of processing may be
conveyed as a single coherent grouping at later levels or
stages.

5. Is the goal of maximizing coherence between distinct
streams of processing relevant to learning within streams?
The effects of context on disambiguation and grouping in
word perception imply that the contextual predictions are
learned, but do contextual inputs from other streams also
influence feature discovery within streams? Possible exam-
ples of such an influence are the effect of learning to read
on phonological awareness (Bentin et al. 1991) and of
phonological awareness on learning to read (Bentin 1992).
Another example is provided by Kanevsky (1989), who gave
subjects with impaired hearing supplementary tactile input
generated from the speech signals that they were lip-
reading. Their performance when lip-reading alone was
significantly improved by several months of training with
the coherent cross-modal inputs. Thus processing of fea-
tures within one stream was affected by their correlations
with features in another stream.

The possibility that coherence between distinct streams
could be of relevance to speech processing has been studied
computationally by Becker (1996) and de Sa (1994a; 1994b).
Both emphasize the need for an algorithm that can discover
the features that distinguish words in the absence of any
external supervisor that tells the network what those fea-
tures are, and both propose that such an algorithm could
use the statistical dependency between distinct streams
of processing. Becker applied the Imax algorithm to the
Peterson-Barney data consisting of the first and second
formant frequencies of 10 vowels spoken by many different
speakers. She showed that from just these two low-level
acoustic features alone the Imax algorithm could discover
higher-order features that could be used to classify the
vowels with better than 75% accuracy.15 Cross-modal inter-
actions have been studied by de Sa and Ballard using the
task of learning to categorize consonant-vowel syllables that
were both heard and seen as a pattern of mouth move-



Phillips & Singer: Cortical computation

680 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

ments. Tightly synchronized audio and video recordings of
5 speakers saying 5 vowels were fed into two separate
streams of processing, which learned to classify their inputs
by minimizing disagreements between the two streams.
When then tested on each stream of input alone, syllable
categorization accuracy was better than 90% for the audio
input and better than 75% for the video input (de Sa &
Ballard 1997). These demonstrations are valuable because
they show how learning by discovering statistical depen-
dencies between separate streams of processing can dis-
cover useful features within streams when applied to real-
world speech processing tasks.

6. Issues arising

If there are common foundations for cortical computation
then a central goal for neurobiology must be to discover
what they are and how they are embodied in cortical
structures and processes. The primary issues that arise
therefore concern the justification of the search for com-
mon foundations and the promise of the various means by
which common cortical organization, common computa-
tional primitives, and common requirements of cognitive
subsystems may be revealed. We hope to encourage discus-
sion of these general issues, as well as of our more specific
findings and hypotheses. Many issues arise in regard to the
latter, such as ways in which contextual integration and
synchronization can be related to attention (e.g., Tiitinen et
al. 1993), imagery (e.g., Ishai & Sagi 1995), and conscious-
ness (e.g., Crick & Koch 1990). Here we note just those
most closely related to the aspects that we have emphasized
above.

6.1. Does the distinction between RFs and CFs
have biological relevance?

The possibility of distinguishing between RF and CF inputs
raises a number of specific questions: (1) Can RF and CF
inputs be distinguished in the cortex on the basis of the
synaptic receptor channels that they activate? One possi-
bility is that CF inputs are more dependent upon voltage-
dependent channels than are RF inputs, but more research
is required on this issue. (2) Can RF and CF inputs be
distinguished on the basis of the anatomical distribution of
their input sites? For example, at least one source of
contextual input, the long-range intraregional tangential
connections, seems to preferentially contact the apical
dendrites of their target pyramidal cells (Gilbert & Wiesel
1983; Kisvarday et al. 1986). (3) If there are contextual
connections then do they affect only timing, without having
any effect upon the total number of spikes that are pro-
duced by the cell or local group of cells, or can they affect
both (König et al. 1995)? One possibility is that the answer
depends on the circumstances, with effects upon the num-
ber of spikes, for example, being more likely with weak RF
input.

6.2. Does the distinction between RFs and CFs
have psychological relevance?

Section 5 suggested several paradigms through which this
distinction might be reflected in behavior. Some of these
ask whether the effects of appropriately selected contextual

variables depend upon the target to a greater extent than
the effects of the target depend upon them. From an
information-theoretic perspective they seek conditions un-
der which behavior transmits information about the target
rather than about the context, even though it is influenced
by context. One specific test for this is to see how the effects
of context depend upon the strength of the target evidence.
If the putative contextual variable does not modulate trans-
mission of information about the target but just contributes
directly to the response decision itself then the effects of
context will decrease as the strength of the target variable
increases (Massaro 1989a; 1989b; Massaro & Friedman
1990). If it does have a modulatory influence, however, then
the effects of context will increase as the strength of the
target variable increases from low to medium values (Smyth
et al. 1996). We have also suggested that some aspects of
contextual integration in higher cognitive functions, such as
word perception, might be related to cortical neurobiology
by analogy to studies of the perception of simple line
element displays that can combine both psychological and
physiological techniques. Whether the research that this
suggests will reward the investment required remains to be
seen. However this turns out, it is hard to see how the
distinction between RFs and CFs could fail to have psycho-
logical relevance if it is biologically valid.

6.3. Does the cortex use synchronized
population codes?

Various doubts have been raised concerning the functional
role of synchronization, but biophysical and theoretical
arguments suggesting that it has a major role have already
been noted (e.g., Abeles 1982; 1991; von der Malsburg
1981), and sections 4 and 5 outlined further support for this,
including evidence that synchronization and behavior are
closely related and that the stimulus conditions producing
synchronization have detailed similarities to those produc-
ing grouping in perception. Further evidence could be
obtained on this issue by experimentally manipulating the
synchronization of spikes on a fine time scale to see whether
this then has consequences for behavior. This is technically
difficult but one way in which it might be done is by
studying how the modulatory effects of context depend
upon the precise temporal relationships between target and
context. For example, a paradigm for distinguishing mod-
ulatory from direct effects such as the one described by
Smyth et al. (1996) could be used in a texture segregation
task in which there are both target and contextual cues to
segregation. The stimulus parameters used to specify the
target and contextual boundaries could both change rap-
idly, and with various phase relations. The central question
would then be whether the context preferentially modu-
lates the detection of target boundaries with which it is
synchronized to within a few milliseconds. To improve the
chances that the external timing relations imposed upon the
cues will give adequate control of the timing of internal
activity the stimuli should be presented under conditions
that maximize the use of fast high temporal resolution
pathways (e.g., low spatial frequencies, dark adapted Ss,
etc.). Such studies are encouraged by results showing that
in texture segmentation tasks temporal differences in stim-
ulus onset of as little as 10 msec can be used to segregate
figure from ground (Leonards et al. 1996).
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6.4. What form or forms of self-organization
occur within the cortex?

As noted in section 3.5, algorithms that learn by maximizing
coherence across streams can discover useful higher-order
functions (Becker 1996) but may nevertheless be more
limited in what they can learn than supervised algorithms
such as error backpropagation (Rumelhart et al. 1986). This
does not necessarily make them less biologically plausible,
however, and would make them more plausible if their
limitations were shared with the processes of cortical self-
organization. Unfortunately, those limitations are not yet
clear. Some studies suggest that the human visual system
has great difficulty learning arbitrary nonlinear functions
such as the XOR (Thorpe et al. 1989), but more evidence is
required. Furthermore, in cases where such difficult learn-
ing problems are solved, this might be because the input is
transformed in a way that makes the problem easier (Clark
& Thornton 1997), so we need to know how any input data
is recoded internally in order to know what internal learn-
ing problems have been solved. Major tasks for future
research are therefore to determine what functions can and
cannot be learned by cortical self-organization and to com-
pare them with the capabilities and limitations of algo-
rithms derived from computational theory.

Four well-specified learning rules that have been pro-
posed as a basis for cortical self-organization turn out to
have a close family resemblance to each other even though
they were derived in different ways (i.e., those of Bi-
enenstock et al. 1982; Der & Smyth, in press; Hancock et al.
1991; Kay & Phillips 1994; 1997). They all relate the change
in synaptic strength to postsynaptic activity in approx-
imately the nonmonotonic way shown in Figure 5. Further-
more, there is direct physiological evidence for a depen-
dence of this general form (Artola et al. 1990; Dudek &
Bear 1992; Kirkwood et al. 1996; Singer & Artola 1994).
Intrator and Cooper (1995b) provide detailed arguments
for the computational value and biological plausibility of
such rules, and for the view that they are common to the
hippocampus as well as to both mature and immature
cortex. A key feature of all of these rules is the threshold of
postsynaptic activity above which connections are strength-
ened, and they differ in the way that this is specified. Some
keep it fixed, others move it dynamically as a function of
prior activity, and the latter differ in what aspects of prior
activity are used and in how they are used. It is possible that
various versions of this rule exist, with simpler and less
computationally powerful ways of specifying the threshold
being found in some species and/or neural subsystems, and
more complex and powerful ways being found in others.
There is physiological evidence for a dynamically moving
threshold (Huang et al. 1992; Kirkwood et al. 1996), and
investigations of possible molecular bases for it have already
begun (Mayford et al., in press). The detailed properties of
this threshold and its relation to theories of learning is
clearly a major issue for neurobiology.

Does context affect RF learning? Gilbert and Wiesel’s
(1990) observation that prior contextual stimulation al-
tered the orientation tuning function that was later ob-
tained in response to receptive field stimulation alone
suggests that it can, but these effects were not studied
systematically and their causes are uncertain. More direct
study of this issue is therefore required, and ways in which

this can be done were suggested in sections 4.3, 5.6, and
5.7.2 (point 5).

6.5. To what extent do these processes provide
a representation of the external world?

The ability to form representations of the external world is
often thought to be fundamental to cortical computation.
We have argued that networks of local processors with
contextual guidance can in effect discover distal variables
and relationships by discovering mutual information in
diverse data-sets. This may not be the same as forming
explicitly intentional representations of the external world,
however (Phillips et al. 1995a). “Representation” is com-
monly used to describe what sensory and perceptual sys-
tems do, and in that general sense it is synonymous with
“the transmission of information.” It also has a more spe-
cific meaning, however, such that the distinction between
representation and referent is critical. Intentional repre-
sentation is using one thing, the representation, in the place
of another thing, the referent. It implies a user that knows
about and distinguishes both the representation and the
referent. The relation between representation and referent
can be iconic, symbolic, or both, and the relationship is
asymmetrical. This asymmetry does not apply to the notion
of information transmission, however, which is defined as
the mutual information that is shared between input and
output.

Representation proper plays an important role in human
cognition, but much cortical function may proceed without
it, nevertheless. Phylogenetic studies of such representa-
tional abilities show them to be rare or absent outside the
primate line and to emerge progressively within it (e.g.,
Byrne & Whiten 1992; Chavalier-Skolinkoff 1983). In chil-
dren, different aspects of this skill develop during years 1 to
6, gradually becoming more flexible, internalized, and
differentiated (e.g., Campbell & Olson 1990; De Loach
1987; Piaget 1954; Wimmer & Perner 1983; Zaitchik 1990).
We know of no physiological observations showing that
local cortical processors treat their inputs as standing for
something other than themselves. Furthermore, we know
of no neural network model that puts intentional represen-
tation into the dynamics of the network, rather than just
leaving it in the mind of the designer. Such models often
have considerable computational power, nevertheless, even
though they do not incorporate any proper intentional
representations of an external world.

We conclude that representation proper is not a common
feature of cortical computation, but arises late in both
phylogenetic and ontogenetic development, and perhaps
upon foundations such as the implicit form of realism that
has been hypothesized here to result from the maximization
of coherent variation by local cortical processors. If so, a
better understanding of the capabilities and limitations of
those foundations will help us understand how higher
cognitive functions are possible, and why they are needed.
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NOTES
1. For further discussions of the advantages of such “construc-

tive” effects of contextual guidance, or reentrance, upon RF
selectivity, see Finkel and Edelman (1989) and Tononi et al.
(1992b; 1996).

2. From a statistical point of view these learning abilities
combine the descriptive aims of techniques such as principal
component analysis with the predictive aims of multiple regres-
sion. They are therefore related to techniques of latent structure
analysis, such as canonical correlation (Giffins 1985; Hotelling
1936), which seek functions defined upon separate data-sets such
that the correlation between them is as large as possible. Canoni-
cal correlation can in principle be implemented within a neural
network (Kay 1992), but it is concerned with linear functions of
just two data-sets. The computational studies in section 3 extend it
to the multistage analysis of multiple data-sets.

3. Further examples of this approach are provided by Zemel
and Hinton (1991), who show how it can discover viewpoint-
invariant relationships that characterize objects, and by Becker
(1993), who shows how it can learn to compute translation-
invariant object categories using just the continuity of an object’s
identity across time.

4. One of the many examples that Gallistel cites is that migra-
tory birds learn the position of the celestial pole while they are
fledglings (Able & Bingham 1987). He argues that this requires a
procedure that is specially designed to compute and store the
values of variables that specify the position of the celestial pole in
the pattern of dots defined by the circumpolar stars. He concludes
that “we should no more expect to find a general-purpose learning
mechanism than we should expect to find a general-purpose
sensory organ” (Gallistel 1995, p. 1266).

5. The goals of Infomax and of Coherent Infomax differ only in
the value given to f1. This therefore suggests an important role for
this parameter. It specifies the balance between increasing infor-
mation transmission within streams of processing and increasing
predictability across streams. It is analogous to the parameter “eta”
in the algorithm for discovering predictable classifications devel-
oped by Schmidhuber and Prelinger (1993). An advantage of
specifying the relative priority to be given to these two goals by a
single parameter is that it provides for a continuous transition
between them. Appropriate values for this parameter might then
vary with the layer of processing and stage of learning.

6. How these two conditional probabilities could be estimated
in a biological system is not yet clear, so a simpler rule such as that
proposed by Der and Smyth (in press) or by de Sa (1994a; 1994b)
may be more plausible. On the other hand, it can be argued that
we often underestimate the computational power of individual
neurons, so an approximation to the more complex rule may be
feasible.

7. These demonstrations show how CF input increases the
probability of at any moment producing outputs that are mutually
supportive of each other. They thus generate grouping through
synchronization. These effects are compatible with temporal
structure in the outputs arising from any of a variety of sources,
including periodicity arising at the level of single cells, local
circuits, or larger populations. Any temporal variations in the
outputs will be transmitted through the CF connections in such a
way as to increase the probability that coherent outputs will be
active simultaneously.

8. Examples of such nets are those incorporating reentrant
connections (e.g., Sporns et al. 1991; Tononi et al. 1992b).

9. Tests for modulatory effects can be specified in terms of the
mutual and conditional information between target, context, and

response (Smyth et al. 1996). These tests can be used in cases
where context and target variables are correlated, and where the
context either does or does not also have a direct influence on
response. One distinctive sign of modulatory effects is provided by
an increase in I(X;CuR) as target strength increases from low to
medium values. I(X;CuR) represents the information transmitted
about the context in addition to any information transmitted about
the target; this would be intuitively expected to decrease with
increases in target strength. To test for an increase in I(X;CuR) we
estimate the probability of a correct response in a two-alternative
forced choice task in the presence of either supporting or nonsup-
porting context at two different levels of target strength. If the
effect of context increases with target strength then the context is
modulating transmission of information about the target.

10. Other major issues that need to be resolved in order to
provide an adequate account of context effects in word perception
include the following: (1) What are the effects of noise in the input
and noise generated from within the system itself (Movellan &
McClelland 1995)? (2) How is overt responding related to the
different levels of analysis? In particular, to what extent do seg-
mental decisions (i.e., decisions concerning letters or phonemes)
reflect the activity at segmental levels and to what extent at word or
morphemic levels? (3) What decision processes are used to gener-
ate overt responses from the information made available by the
speech perception system (Massaro & Friedman 1990)? (4) What
is the time course of context effects upon processing? In particular,
how soon do these effects become apparent after stimulus onset?

11. Another way of distinguishing contextual influences may
be by proposing that target information sets limits upon discrimi-
nability whereas context just adds bias. This is not identical to our
emphasis upon contextual interactions that do not corrupt the
meaning of the signals that interact because information transmis-
sion depends upon both sensitivity and bias but it is similar, and
much of the evidence from studies of word perception can be seen
as supporting it (e.g., Krueger & Shapiro 1979; Massaro 1989a;
Massaro & Cohen 1983; Morton 1969). The evidence is not wholly
unambiguous on this issue, however, because accuracy in forced-
choice discrimination between letters depends upon context (e.g.,
Johnston & McClelland 1973; Reicher 1969), and because target
discriminability, as measured by d9, is also affected by context in
some other paradigms (e.g., Phillips 1971; Samuel 1981; 1996).
Furthermore, it is difficult to draw strong inferences about inter-
nal processing from such phenomena alone because whether they
are compatible with certain aspects of a model (e.g., the architec-
ture) depends upon other factors (e.g., the role of noise; Movellan
& McClelland 1995).

12. Patient AN had a stroke in 1979 when she was 47; she has
been studied at Stirling since 1985 (Goodall & Phillips 1994,
Phillips & Goodall 1994). Patient AM is her nephew; he had a
stroke in 1990 at the age of 35, leaving him with very similar
deficits (Goodall 1994). The mental status of both patients is good;
they are cooperative and insightful during testing. In one study
(Goodall 1994), five 4-letter nonwords were created and printed
on a sheet that was placed in front of the patient, who had to say
whether each of a number of separately presented test items was
on the sheet. To enforce accurate visual discrimination the test
items included nonwords differing from the training items by just
one letter. This training proceeded until performance was accu-
rate, which took about 10 minutes. At no time did either the
patient or the experimenter speak or write the nonwords; indeed,
the patients could not accurately read them aloud, either before or
after training. After a 5-minute break the five familiar nonwords
and five unfamiliar nonwords were read for writing to dictation.
The familiar nonwords were all written correctly and fluently, but
none of the unfamiliar nonwords were written either correctly or
fluently. The familiar nonwords were read to 42 normal subjects
for writing to dictation, but without any prior presentation of their
written form. The spellings produced by these subjects were quite
different from those given by our two patients, because unlikely
but plausible spellings were chosen when selecting the stimuli to 
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be used with the patients. This confirms that the patients were
using the knowledge obtained from the visual discrimination
training when writing the familiar nonwords to dictation.

13. It may be possible to preserve the view that the normal
processes of word perception use local codes for words by propos-
ing that these results reflect the use of voluntary visual imagery or
episodic memory strategies. Several aspects of the results greatly
weaken such interpretations, however. First, neither patient ever
claimed to be visualizing. Retrieval of the learned information was
fast, fluent, and automatic in the sense that the patients showed no
sign of cognitive mediation at retrieval. Indeed, both were sur-
prised at their ability to write the nonwords and on one occasion
AM, quite unprompted, said “Now how did I do that?” Second, the
information transmitted from the visual input to the written
output was not at the level of a visual image because the patients
transcribed printed text into their own cursive script. Third,
knowledge of the new items was acquired gradually and retained
over periods of months. This is not characteristic of episodic
memory functions. Fourth, writing to dictation is a typical implicit
memory task and was used as such here. No reference was made to
previous presentations. The patients were simply asked to write
down what was said to them. This is exactly the kind of task that
relies on procedural skills and is consequently unimpaired in
patients with deficiencies in episodic memory (McCarthy & War-
rington 1990; Shallice 1988). Fifth, familiar English words oc-
curred as error responses to unfamiliar nonwords, but the familiar
nonwords did not. This shows that nonwords were not being
processed in a way that kept them separate from knowledge of
familiar English words.

14. This difficulty is made clear by studies comparing patient
AN’s ability to read and write familiar items with her ability to read
and write closely related but unfamiliar items. She can read
familiar words such as NAPKIN and MUSKET but not unfamiliar
nonwords such as NAPKET and MUSKIN made by recombining
their component syllables. This is unlikely to be due to the absence
of semantic mediation because she can learn to read meaningless
nonwords with which she is familiarized (Goodall & Phillips 1994).
She can also learn to copy meaningless nonwords such as
BONSED and MUNIZE, but this ability does not transfer to the
copying of BONIZE and MUNSED (Phillips & Goodall 1994). If
both kinds of item are processed as distributed codes that are
treated as a single group, whether familiar or not, then analysis and
simulation both suggest that there will be good transfer to novel
items that share components with familiar items. This applies to
both feedforward networks (e.g., Baldi & Hornik 1989; Brousse &
Smolensky 1989; Phillips et al. 1993) and recurrent architectures
with attractors (e.g., Plaut & McClelland 1993). Thus, these
studies of AN suggest that the letter strings were processed as
distributed codes to which internal processes were applied to form
familiar or coherent groupings. Computational studies of coding
through synchronization in the dynamic link architecture demon-
strate the possibility of mapping structured descriptions as famil-
iar wholes while specifically avoiding false combinations of their
component subsets (e.g., Lades et al. 1993; von der Malsburg
1988), but whether this approach can be developed to account for
word perception in detail remains to be seen. A simpler alternative
possibility is that familiar items are signaled by distributed codes
of the kind used in most connectionist theories but with the
addition of internal grouping processes that segregate unfamiliar
combinations into distinct subsets that are processed separately.

15. Becker (1996) applied the Imax algorithm to the task of
learning to categorize phonemes by presenting each of two
streams with different versions of the same vowel. We assume that
this design could easily be modified to explore the use of sequen-
tial dependencies between successive acoustic inputs of different
phonemes to learn how to categorize them. Guiding learning
within streams by coherence across streams does not require
either that the coherence be perfect or that the different streams
process different instances of the same thing.
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Is synchronization necessary
and is it sufficient?

Daniel J. Amit
Istituto di Fisica, Universita di Roma, La Sapienza, Rome and
Racah Institute of Physics, Hebrew University, Jerusalem, Israel;
amit@jupiter.romal.infn.it

Abstract: The strong coupling of binding to cross-correlations is meth-
odologically problematic. A completely unstructured network of neurons
can produce cross-correlations very similar to the measured ones, and yet
they have little dynamic effect.

If stimuli in separate receptive fields actually integrate to an
instantaneous whole, one is faced with a complex dynamical
problem at the neurophysiological level. Less speculative is the
fact that in primary visual cortex, neuronal spiking activity exhibits
a certain level of synchrony just when the separate stimuli can be
considered parts of a whole. We need little convincing and no
neurophysiology to agree that context must be part of perception
(as well as of more elaborate mentation) to supplement and give
sense to the fragmented way in which we receive the “world.”

The issue that Phillips & Singer’s (P&S’s) target article ad-
dresses seems to be that a concatenation of the view that context
must function and that the Singer-Gray-Koenig-Kreiter synchro-
nization has been observed, brings new insight, either to cognitive
science or to neurobiology. I do not find this very convincing,
despite the weighty evidence represented by some 260 learned
references.

Clearly if a well-defined cognitive problem can be solved by a
specific neurophysiological phenomenon, then its solution must
be known a priori. The discovery of the physiological fact can at
best demonstrate that a device exists in the biological brain that
may be the vehicle for the acknowledged solution. To argue that a
given physiological fact is either required for the solution of the
cognitive problem, or that it is the physiological fact that has given
birth to the solution, is a rather risky undertaking.

First, arguing that a physiological fact is necessary for a solution
exposes one to the vicissitudes of complex dynamics and treach-
erous numbers: it is argued that synchronization makes neural
responses more effective in dealing with the dynamical question of
how synchronizations, when they arise, are propagated from
where they are observed to where they are needed as a solution.
The target article quotes Koch and collaborators (Bernander et al.
1994) to argue that synchronized signals are effectively propa-
gated. But this study is rather ambiguous on the issue, and in
different regimes of parameters the system may make synchroni-
zation either more or less effective than unsynchronized inputs of
the same spike rate.

Should one conclude from the fact that synchronization seems
necessary for a solution to a cognitive problem, that the parame-
ters in the cortex are in the right regime? Or conversely, that if the
parameters of cortex are unfavorable, the cognitive problem has
no solution?!

Is the cognitive problem solved for any level of synchronization
(as measured by the peak in the cross-correlations of neurons (see,
e.g., Kreiter & Singer 1996) or is some low threshold value
required? I will try to indicate below that there are reasons to
believe that the synchronizations observed in these remarkable
experiments can be considered small.



Commentary/Phillips & Singer: Cortical computation

684 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

Figure 1 (Amit). Right (experiment): averaged cross-correlation
from Figure 7 of Kreiter and Singer 1996. Left (simulation): cross-
correlation (averaged over eight 5-second runs, the same two cells
recorded simultaneously and normalized to the product of the two
rates) from a simulation of a network of 7,500 cells in spontaneous
activity. In both, the coincidence bin is 1 msec. The rates on the
left are 50–60Hz, on right 30–35Hz.

P&S’s position seems to be that the fact that synchronization
solves an outstanding problem in cognitive psychology is not
sufficient reason for its existence. It is supplemented by an
argument of maximum information transmission. This again
seems to raise I think more problems than it solves:

1. Is binding related to maximum information transmission? Or
is it a coincidence?

2. What is the space in which this maximization is affected?
3. Is information transmission maximized at any level of syn-

chronization and any level of background noise?
4. To maximize information rate, some notion of what is the

relevant information to be transmitted is required. One can define
an enormous amount of information in the spatial variation of the
depolarization on a single cell that is unlikely to be relevant to
cognitive science.

But wouldn’t the identification of the relevant information that
can be transmitted with profit for cognitive phenomena be itself a
major success in a bottom-up approach of cognition? Do we know
what it is?

Finally, concerning the magnitude of synchronization: in Figure
1 we reproduce a cross-correlation curve, expressing stimulus
selective synchronization from Kreiter and Singer (1996). To its
right is a cross-correlation from a simulation of spontaneous
activity of a totally structureless, noisy network of spiking integrate
and fire neurons (Amit & Brunel 1996). One notes first that the
two curves are qualitatively identical. The peak at zero delay is
about the same factor above the background value corresponding
to no correlation between the spike trains. The remarkable fact
about the experimental result is that it depends on the stimuli
presented to the two nonoverlapping receptive fields. This is of
course absent in the simulation. What is significant about the
simulation is that despite the presence of this level of “synchroni-
zation,” all of its properties other than the cross-correlation itself
can be theoretically deduced quantitatively, assuming that the
spike trains are independent. This would imply that correlations at
this level and of such duration are not noticed up-stream. [See also
Amit: “The Hebbian Paradigm Reintegrated” BBS 18(4) 1995.]
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Do the biological details matter?

James M. Bower
Computation and Neural Systems Program, California Institute
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Abstract: Phillips & Singer (P&S) extend ideas derived from the observa-
tion eight years ago that the coherence (synchronization) of cortical
oscillations can be modulated by the structure of visual stimuli. As
described in the target article, a large part of the continued interest in this
finding is related to independent theoretical work suggesting that syn-
chronized cell firing could help solve the problem of binding together
within cortex neuronal activity associated with different attributes of visual
stimuli. The authors present an abstract “proof of concept” model describ-
ing how their cortical processing scheme could work, but our biologically
realistic models of cortical relationships suggest that the proposal is
biologically implausible. Our realistic models lead to a very different
interpretation of the significance of cortical oscillations.

Abstract models as existence proofs. Our own more realistic
models of cerebral cortical networks and neurons suggest that
Phillips & Singer’s (P&S’s) ideas are biologically implausible.
Shortly after the first reports of oscillations in visual cortex (Gray
1989), we replicated the results by slightly modifying our existing
models of oscillations in olfactory cortex (Wilson & Bower 1988;
1992) to reflect neocortical structure (Wilson & Bower 1991).
These simulations demonstrated the likely importance of horizon-
tal connections in sustaining the physiologically described phase
relationships and suggested that the mechanisms of oscillations in
these two very different sensory cortices could reflect “a very
general property of cerebral cortical function” (Wilson & Bower
1991). At the same time, however, we pointed out that there were
likely to be several fundamental problems with implementing
phase-dependent neuronal grouping in a real biological system, a
result supported by our subsequent single cell modeling (see
Bower 1995 for review).

Are cortical oscillations phase constant? For phase to group
neurons, the phase relationships between the neurons should, in
principle, be stable during the entire grouping period. Our model
predicted that “zero phase relationships between particular neu-
rons should exist . . . only over multiple trials,” and stated that “the
absence of within-trial coherence . . . (would) seriously confound
the interpretation of fine phase differences in higher cortical
areas.” We concluded that “phase relationships reflect the struc-
ture of intercellular communication within (cortical) networks”
and not neural coding, per se. In other words, phase relationships
were not sufficiently instantaneous, continuous, or regular to
support the binding hypothesis.

Are temporally coincident presynaptic effects more effective
postsynaptically? At the base of the proposal concerning syn-
chronous oscillations is the idea that post synaptic ells are more
likely to fire with synchronous inputs. However, recent modeling
and physiological investigations suggest that this basic assumption
is not necessarily true. For example, the timing of network
generated inhibition is equally or more important than excitatory
presynaptic coincidence. Further, with proper timing, non-
synchronous synaptic input patterns can result in larger somatic
EPSPs than synchronized inputs (c.f. Protopapas & Bower 1994).

Is it likely that the timing of spike occurrence is independent of
the information content in the spike sequence? In the abstract
model presented, the receptive field (RF) and contextual field
(CF) signals are simply declared to be independent through the
built in transfer function: A(r,c) 5 0.5r[1 1 exp(2rc)]. However, in
real neurons it is likely that the precise timing of the spikes itself
carries information about the stimulus (Bialik et al. 1991). There-
fore, anything that changes the timing of spikes will alter the signal
being transmitted to the next stage.

What then is the significance of cortical oscillations? As a
result of our biological based simulations, we proposed many years
ago that “phase may not be a robust strategy for encoding stimulus
specific information” and instead suggested that cortical oscilla-
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tions reflected the structure of inter-cellular communication
within and between networks (for review, see Bower 1995). Our
more recent modeling of single pyramidal cells suggest that these
cells are very sensitive to the specific spatial and temporal (and not
just synchronous) patterns of synaptic input. Furthermore, we
have suggested for many years that oscillatory activity patterns also
indirectly reflect the timing and organization of computational
cycles within cortical circuits (Bower 1995). Finally, whatever the
functional role of oscillations in cortical networks, I believe it is
more useful to develop theories based on causal relationships
between neural components manifest in realistic simulations than
to attempt to squeeze ad hoc suggestions from machine vision into
brain circuits.

Binding by synchronisation:
A task-dependence hypothesis

Guido Bugmann
School of Computing, University of Plymouth, Plymouth PL4 8AA,
United Kingdom; gbugmann@soc.plym.ac.uk
www.tech.plym.ac.uk/soc/staff/guidbugm/bugmann.htm

Abstract: Binding needs to be task dependent, and cannot usefully be
driven by properties of the stimulus alone. However, task dependent
binding can only take place after the patterns in a stimulus have been
identified. Thus pattern recognition needs to be done prior to binding.
Synchronisation may be a consequence of pattern recognition and can be
used to localise the pattern and tag its attributes at different levels of
information processing.

It is frequently proposed that the function of synchronisation is to
bind features belonging to the same stimulus. Let us assume that
this is the case. The working hypotheses in early papers on
synchronisation were that binding is driven by properties of the
stimulus and is mediated by lateral connections within a cortical
area (or between areas). These hypotheses suffer from several
weaknesses:

(1) The data most frequently cited as evidence that lateral
connections cause synchronisation do not provide such evidence.
In strabismic cats there are no lateral connections between neu-
rons in V1 responding to inputs from different eyes. The reduced
synchronisation between these neurons is interpreted as indicat-
ing a synchronising role of the lateral connections (König et al.
1993). However, strabismic cats only analyse the visual informa-
tion of one eye at a time. So, the data can also be interpreted as
indicating that (lack of ) synchronisation results from the (lack of )
processing of the information by higher visual layers. Another set
of data shows that severing the callosal link between the visual
areas in the two hemispheres eliminates the synchronisation
between neurons in these areas (Engel et al. 1991b). This is also
taken as evidence for the role of lateral connections for syn-
chronisation. However, callosal fibres also comprise the feedback
fibres from higher areas in the contralateral hemisphere. Thus the
data could also indicate that synchronisation is mediated by
feedback projections from the area that uses the information. This
is consistent with findings by Sillito et al. (1994) and Munk et al.
(1995).

(2) The data used to indicate that synchronisation is necessary
for perception do not give such evidence. For instance, in cat and
humans with strabismic amblyopia, only one eye is normally used.
If forced to use the other eye, subjects reveal deficits in connecting
contours and discriminating details near contours (see references
in Roelfsma et al. 1994a). Only weak synchronisation is observed
between neurons responding to this other eye (Roelfsma et al.
1994a). This is interpreted as indicating that synchronisation is
needed for correct perception, but it could just as well indicate the
opposite, namely, that correct perception causes synchronisation.

(3) The hypothesis of stimulus-driven binding does not explain
how neurons know what they should bind. For instance when you

are observing your grandmother’s face, you may wish to determine
her identity, if she has her eyes open, or if her skin is smooth. In the
three cases, different elements of the visual input need to be
grouped. Thus, if binding by synchronisation takes place, it cannot
be stimulus-driven. External inputs are needed to control binding
in a task-dependent way.

The context field (CF) connections postulated in the paper by
Phillips & Singer (P&S) open the door to a task dependent
binding. However, they are not used for that purpose. Instead,
they help in setting up a connectivity that maximises the transfer of
relevant information about the input, where the “relevance” is
determined by properties of the input. Thus binding remains
input-driven rather than task-driven.

Unfortunately, task-driven binding is problematic too. It raises a
new question as a counterpart to (3) above: How can a high-level
process know which parts of the input image to group before it
knows what is in the image?

One way to solve this problem is to abandon the notion that a
binding mechanism is necessary for pattern recognition. The
feature detectors at various stages of visual information processing
may exhibit enough positional dependence to make further bind-
ing unnecessary. Also, if a visual scene contains numerous objects
or interpretations of objects, why should these not all be recog-
nised by their respective groups of neurons? The problem may be
more to localise an object or pattern of interest and that is where
synchronisation may be useful. In a neural network described by
Bugmann and Taylor (1993; 1994a; 1994b), when a neuron in a
higher layer starts firing, it induces the synchronisation of all
neurons in the lower level layers contributing to its response by
virtue of a cascade of feedback projections. The resulting area of
synchronised activity in a low layer (e.g., corresponding to V1 or
LGN) indicates the location of the pattern. By enabling or dis-
abling high level neurons in a task dependent way, only the
relevant visual features are synchronised. In such a scheme,

Figure 1 (Bugmann). Principle of multi-resolution binding. A
question such as “How smooth is the skin of my grandmother’s
face?” is answered after the following sequence of events: First,
the grandmother cell in layer l3 is enabled by the semantic
“objects” layer. When the grandmother is recognised, neurons in
layer l2 and l1 representing attributes of the face are synchronised
by feedback projections. Finally the semantic “texture” layer can
use the group of synchronised neurons in layer l1 to evaluate the
smoothness of the skin. If the texture of the eyelids is of interest,
one more processing step is needed: After recognition in layer l3 is
acknowledged by the semantic “object” layer, signals from the
semantic “shape” layer restricts the set of active neurons in layer l2
to those coding for the eyes. This in turn limits the population of
synchronised neurons in l1 to those corresponding to the eyes.
Anatomical data in (Pandya & Yeterian 1985) may support such a
model.
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synchronisation and binding is a consequence of the recognition of
a pattern, not its cause.

Task-dependent synchronisation predicts synchronisation be-
tween distant neurons which represent an object relevant to the
task at hand (Bugmann & Taylor 1994b). This differs from the
familiarity factor suggested by P&S.

Another possible role of top-down synchronisation is multi-
resolution binding. For instance, in the grandmother example
given above, the texture of the skin may be represented at a
relatively low level, the shape of her eyes at a higher level, and her
identity at an even higher level. Thus different tasks require
information to be extracted from different levels. By allowing a
high level neuron representing the concept “my grandmother” to
fire, the subset of low level texture neurons corresponding to her
skin would be synchronised. This sub-set could then be used to
produce the response to the question about the smoothness of the
skin (Fig. 1). Thus, a function of synchronisation may be the
tagging of attributes of objects at different levels of resolution.
Sensory information processing can then be viewed as a presenta-
tion process in which information is organised for other systems
that need it.

Support for grouping-by-synchronization,
the context-field, and its mechanisms,
but doubt in the use of information theory
by the cortex

Reinhard Eckhorn
Department of Neurophysics, Philipps-University, Renthof 7, D-35032
Marburg, Germany; eckhorn@bio.physik.uni-marburg.de

Abstract: Our work supports synchronization for binding within Phillips
& Singer’s “contextual field” (CF) as well as the type of its lateral
interaction they propose. Both firmly agree with our “association field”
(AF) and its modulatory influences (Eckhorn et al. 1990). However, the
CF connections seem to produce anticorrelation among assemblies repre-
senting unrelated structures, whereas experimental evidence indicates
decoupling. Finally, it is unclear how the cortex can have access to the
logistic function used in the “coherent infomax” approach.

Evidence for stimulus-related and perception-related syn-
chronization in the cortex. We can provide additional support for
Phillips & Singer’s (P&S’s) hypothesis of context-related feature
grouping from observations of synchronization among fast oscilla-
tions (35–90 Hz) in the visual cortex of anesthetized cats and
awake monkeys; among neurons within a single vertical column;
between separate columns; and between assemblies in different
cortical areas (e.g., Eckhorn et al. 1988; 1993). A general finding
was zero correlation delay even between signals from serially
arranged cortical areas like V1 and V2 of the monkey (Frien et al.
1994). This is indicative of simultaneous processing in coupled
assemblies despite transmission delays – which requires special
types of symmetric mutual connectivity (e.g., Eckhorn 1997). Last,
and most important, we have found first evidence of perception
related synchronization in an intact behaving monkey during a
binocular rivalry task. Here, the monkey’s perception was corre-
lated with the synchronization of oscillations between those neu-
rons representing the features of the currently perceived stimulus
(Eckhorn et al. 1996; Kottmann et al. 1996).

The cortex may use externally or internally generated syn-
chronization for context-related processing. The “coherent in-
fomax” learning procedure requires covariant changes of signals in
neighboring channels in order to assess “Gestalt principles” in
sensory systems. During the first learning phase, these covariant
signals can be supplied only by stimulus-locked cortical activities.
Fast processing of feature grouping is required at later stages of
development as well as in the absence of stimulus-locked activa-
tions. The context connections hence should induce specific

temporal correlation structure on their own. We found both types
of specific synchronization, often simultaneously (e.g., Kruse &
Eckhorn 1996). Fast-changing stimuli dominated cortical syn-
chronization by direct stimulus-locked components and generally
suppressed synchronized oscillations. However, fast oscillations
were generated during phases of slowly changing retinal images
(like ocular fixation and smooth pursuit), that is, in difficult stages
of signal processing. Hence, both types of synchronization may
play a role in contextual grouping operations.

Anti-correlation among separately synchronized groups was
not found in the cortex. The P&S target article concentrates on
context-related grouping arising from facilitative lateral coupling.
However, separation is equally important when assemblies repre-
senting similar features do not belong together. The “contextual”
connections take this into account by inhibiting uncorrelated
signals in neighboring channels; this probably produces negative
temporal correlations (troughs in cross-correlogram). However, to
our knowledge, this effect has not been observed in the cortex.
Instead, incoherent stimuli generally induced uncorrelated activ-
ities among their cortical representations (flat cross-correlogram).
We have recently demonstrated such stimulus-related decoupling
in a particularly sensitive test of figure-ground segregation in the
monkey’s visual cortex (Guettler et al. 1997).

Shape of orientation detectors’ association-field (AF) in pri-
mary visual cortex. In the past we used a definition slightly
different from the CF of P&S, and called it association- or linking-
field (AF; e.g., Eckhorn et al. 1990). While CFs and AFs in models
only supported coupling among coaxially aligned orientation de-
tectors, our recordings of synchronized oscillations from cats’ and
monkeys’ visual cortex revealed additional Gestalt principles.
Besides coaxially aligned synchronization (“good continuation,”
example noted by P&S) coupling among orientation detectors
with different RF positions and orientations exhibited “proximity”
and “similarity” rules (e.g., Frien et al. 1996).

Two types of connections are necessary for receptive fields
(RF) and association fields (AF). We can strengthen P&S’s em-
phasis put on the difference in connections for establishing RF
and CF actions by showing that feed-forward connections estab-
lish RF properties and are of a “standard” type while AF inputs
modulate RF inputs (e.g., “offset multiplicative”) and hence do not
degrade the RF properties while sensitive synchronization is
possible (Eckhorn 1997; Eckhorn et al. 1990). In addition, our
results from models confirmed quantitatively that such modula-
tory connections are more powerful than additive coupling
in enhancing or reducing spatial “signal correlation contrast”
(Juergens & Eckhorn 1979).

Can the cortex use information-theoretic measures for learn-
ing and function? Our answer is “no” at the present state. We will
not disagree that “information” reduction is a main goal of the
sensory cortex, but no one knows how “relevant information” is
defined and how it may be selectively extracted while irrelevant
information is suppressed. The use of Shannon information for
“mutual infomax” cannot solve this problem in principle because it
is restricted to structural information (in space and time) and does
not include the concept of relevance or meaning. In addition, it
does not provide rules for coding but allows only estimations of
upper bounds of what might be achieved maximally with a given
code (e.g., Eckhorn et al. 1975b). Moreover, in the P&S review it is
not evident how the logistic function defined by information
measures is made available to the cortex (during development and
function). In addition, information theory requires stationary
conditions to determine the probabilities of symbols carrying the
information, whereas property of cortical function is changes in its
state. Such instationarities are present either on long time scales
due to learning or on fast scales during sensory processing.

Finally, the P&S do not discuss explicitly the often disputed
question of whether and how the cortex extracts and utilizes
sensory information that is redundant (as it seems to be in the
“mutual infomax”) or whether it suppresses it to obtain sparse
independent code symbols (Barlow & Földiak 1989). The results
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of the “mutual infomax” approach seem interesting, however, and
future work may show whether something similar is really used by
the cortex.
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An internal teacher for neural computation

Dario Floreano
Department of Computer Science, Mantra Center for Neural Computation,
Swiss Federal Institute of Technology, LAMI-INF-EPFL CH-1015 Lausanne,
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Abstract: Contextual signals might supervise the discovery of coherently
varying information between cortical modules computing different func-
tions of their receptive field input. This hypothesis is explored in two sets
of computational experiments, one studying the effects on learning of
long-range unidirectional contextual signals mediated by intervening
processors, and the other showing contextually supervised discovery of a
high-order variable in a multilayer network.

1. Supervision and biological plausibility. Supervised models
represent a successful paradigm of learning for artificial neural
networks. Not only have such models been applied to a wide range
of engineering problems, but they have also been used to infer
computational properties of living brains (e.g., Zipser & Andersen
1988). However, the requirement of corrective feedback for
output neurons (provided by an “external teacher”), often coupled
with backpropagation of error signals along the same synaptic
connections (Rumelhart et al. 1986), raises serious doubts about
the biological plausibility of neural models of supervised learning
(Crick 1989).

The theoretical framework and the computational model de-
scribed by Phillips & Singer (P&S) might now provide a concilia-
tory solution which combines intermodule supervision with a
biologically plausible learning scheme. Contextual signals be-
tween different processors computing different functions of their
inputs might play the role of an “intrinsic teacher.” The idea is that
spatial or temporal correlation of events could be exploited by the
neural system to guide acquisition of a novel processing ability.

To test this hypothesis, at least three constraints must be
satisfied: (1) If supervision takes place between processors com-
puting different functions (which might thus be located far apart
in the cortical tissue), it is necessary to check whether contextual
guidance can have effects at long distance (longer than that
implied by the average extension of lateral intra-cortical connec-
tions), for example, through the mediation of other intervening
processors. (2) Since supervision makes sense only when at least
one of the interconnected cortical processors cannot discover the
appropriate function, the “intrinsic teacher” hypothesis should be
tested on a computationally “difficult” function such as a nonlinear
transformation of the input. (3) Although one could imagine a
situation where an already developed neural module supervises
the learning of another module, the model should also account for
the situation when both modules learn together.

2. Long-range effects of contextual signals. The hypothesis
that contextual signals might function as an “intrinsic teacher” was
tested in a set of computational experiments guided by the above
constraints and based on the mathematical model outlined in
P&S’s target article. An important feature of these experiments is
that contextual connections between different processors (or
modules, if they are composed of more than one processor) were
unidirectional, whereas in all the other experiments described in
the target article contextual connections were reciprocal and
symmetrical. The first experiment was aimed at testing the first
constraint, namely, whether a contextual signal traveling through
several processors with nonoverlapping receptive fields could
guide discovery of the same feature in all processors.

Figure 1 (Floreano). (a) Top: contextually supervised edge-
contrast detection (black 5 1; white 5 11). Thick arrows are
contextual connections. Bottom: Coherent Information transmit-
ted by each processor during learning (solid line: processor 1;
dashed line: processor 2; dotted line: processor 3) and final CF and
RF structure (black is inhibitory, white is excitatory, size is propor-
tional to strength). (b) Top: contextually supervised stereo-depth.
Each output unit of the edge-contrast module sends a contextual
signal to each unit of the stere-depth network (thick arrows). Input
to stereo network consists of a right (top line) and left (bottom line)
retinal image. Left image is shifted one pixel to the right. Bottom:
Coherent Information transmitted by edge-contrast network
(graph on the left) and by output unit of stereo-depth network
(graph on the right).

The architecture was composed of three processors that were
presented with a horizontal edge contrast whose sign was corre-
lated across processors (see top of Fig. 1). The structure of the
input for each processor can be easily understood if we visualize
the receptive field of each module as a 2 3 3 matrix whose entries
can take random bipolar values 21 or 11. The sign of the contrast
edge was given by the difference between the two sums of the row
components. For every pattern presentation, each processor re-
ceived a new random input, but the sign of the edge contrast was
correlated across processors. Although this arrangement might
look a bit artificial, it guaranteed that a simple Infomax approach
could not discover the information correlated across processors.
The three processors were arranged on a line, each receiving a
contextual signal through a unidirectional connection from the
preceding processor; the contextual signal to the first processor,
which was in this experiment supposed to come from an already
developed neural module, was a bit whose value alternated to-
gether with the sign of the edge contrast presented as input to the
network.

Starting from initially random weights for both receptive field
(RF) and contextual fields (CF) connections, in less than 500
learning cycles all processors learned to signal the sign of the edge
contrast even though the contextual signal to the last two pro-
cessors was mediated by intervening processors (the graph at the
top of the figure plots Coherent Infomax values for each processor
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during learning). The final structure of weight strengths for each
module reflected the edge variable (top of Fig. 1 represents
weight strengths using the same format as Fig. 7 of P&S’s target
article). Similar results were also obtained with longer chains of
processors, with different input features (lines against back-
ground), and also with partial overlap of receptive fields (25% of
the total surface area) between adjacent processors.

3. Discovery of surface depth from multiple cues. Having
shown that contextual signals could drive discovery of correlated
functions even at long distances, a further set of experiments was
run where a neural module attempted to drive another module to
extract depth from stereo images. Depth perception from stereo
images requires a nonlinear transformation which could be
learned by a multi-layer perceptron, but not with self-organized
Hebbian learning (unless some specific constraints are imposed
on the network architecture). This seemed a suitable problem to
test whether contextual signals arising from another neural mod-
ule could guide the learning of a computationally difficult func-
tion. Also, stereo-depth had already been used as a test problem in
a similar framework by Becker and Hinton (1992) (see sect. 1.4,
para. 4, of the target article for a discussion of important differ-
ences).

The neural network architecture was composed of two modules,
each one presented with input variables coherently varying across
modules (see bottom of Fig. 1). One module, which was composed
of two processors linked by reciprocal contextual connections, was
presented with the same edge-contrast input described above.
The other module, composed of a single multi-layer processor, was
presented with two horizontal “slices of pixels,” each one extracted
from the images forming a random-dot stereogram. During learn-
ing, variation of the sign of the edge was correlated with a left or
right shift in one of the random-dot images. The hidden unit and
the output unit of the stereo-depth module received contextual
signals from the output units of the edge-contrast network through
unidirectional connections. Although these input patterns might
be seen as multiple retinal cues correlated with depth (such as
direction of contrast between foreground and background, and
corresponding direction of binocular disparity), the choice of this
particular setup was motivated mainly by coherence with previous
experiments described in section 2 and by constraints (2) and (3)
suggested in section 1.

Several experiments were run where both modules simul-
taneously learned with a new set of initial random strengths for RF
and CF connections. On average, the stereo-depth module suc-
cessfully learned in 75% of the experiments to signal correctly the
direction of retinal shift (the edge-contrast module always learned
successfully), as can be seen by the value of Coherent Infomax
(graphs at bottom of Fig. 1).

Several types of random-dot stereograms were used in these
experiments, varying the size of the image, using a Gaussian
image-centered shift probability for each pixel, and adding various
levels of uniform noise. Although these variations did not have an
influence on whether the stereo-depth network learned suc-
cessfully or not, the cases of failure took place when the edge-
contrast network learned very quickly. As a control experiment, we
observed that a stereo-depth module composed of two or more
interconnected processors without contextual guidance from
other modules could never discover the sign of the shift.

As expected, the strength of the contextual connections to the
hidden unit of the stereo-depth network was smaller than that of
the connections to the output unit, because the hidden unit
activation cannot be perfectly correlated with the direction of shift
(if that was the case, a simple perceptron would be sufficient).
Nonetheless, from a set of other experiments, it was clear that both
contextual connections to the hidden unit and to the output unit
were necessary for the stereo-depth network to learn correctly.

4. Conclusion. The experiments described here do not rule out
the possibility that the discovery of nonlinear high-order coherent
variables could simply arise from bottom-up information process-
ing and reciprocal lateral interactions. Rather, they are intended to

suggest a further powerful functionality that unidirectional con-
textual connections might serve: that of an intrinsic teacher. Not
only does this possibility help bridge the gap between a powerful
learning paradigm and biological plausibility, but it makes Phillips
& Singer’s theory even more appealing as a common foundation of
cortical computation.

ACKNOWLEDGMENTS
Part of this work was supported by a Network grant from the Human

Capital and Mobility Program of the European Community. Special
thanks to Darragh Smyth for several interesting discussions.

Nonlinear computation and dynamic
cognitive generalities

Robert A. M. Gregson
Division of Psychology, School of Life Sciences, Australian National
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Abstract: Although one can endorse the complexity of the data and
processes that Phillips & Singer (P&S) review, their mathematical sugges-
tions can be compared critically with cases in nonlinear psychophysics,
where the theoretician is faced with analogous problems. Owing to P&S’s
failure adequately to recognise both the intricate properties of nonlinear
dynamics in networks and the constraints of metabolic demands on the
temporal generation of patterns in biological nets their conclusions fail to
meet the problems they properly address.

Phillips & Singer (P&S) have generously provided us with a
challenge that is subtle, complex, and erudite. It would be preten-
tious to attempt a global critique; I restrict myself to the smaller
area of multivariate psychophysics where there are parallels and
agreements, and perhaps profound differences. Their distinction
(sect. 1) between subsystems differing in information upon which
they operate, but not in some of the fundamental operations they
have available as processors, is one I completely endorse. Indeed,
it is fundamental to the application of nonlinear dynamics in
connected channels and networks to the creation of a theoretical
psychophysics independent of any one specific sensory modality
(Gregson 1988; 1992; 1995; 1996).

Do we need the sorts of mathematics at which P&S hint, and
which they describe here obliquely in words and pictures, to
exhibit the intricate dynamics to which the data surveys point? We
have repeated mention of nonlinearities, levels of operation, local
coupling, multivariate statistics, synchronization of vectors and
spikes, recoding and condensation of information, and dynamic
grouping subject to central plastic revision. I concur with all of
these, and more, but I would add, having tried to write theory
without it, some consideration of yet another contextual field
(what they call contextual field [CF] on receptive field [RF]
processes) and that is metabolism. The intrinsic delays and pacings
required by a system that can, because of its energy consumption,
run temporarily out of steam, impose boundary conditions on
modeling. The brain is in real time and is a dissipative system both
biologically and mathematically.

The hippocampus has a central role in information processing;
its operations include recursive loops, with different delays and
cortical mappings. For the dynamic theorist it is the properties of
such loops in an environment where the system floats in its phase
space between stabilities of various types, including chaos, that can
carry the encoding and the temporal pacing of patterns of informa-
tion.

Using mathematics quite different from the transfer function
(sect. 3.1) and constructing bivariate lattices and cascades of such
lattices, I obtained simulations of many of the sensory and percep-
tual properties that P&S want to derive (sect. 3.4.2) from their
units, processors, streams, and layers. What is interesting is that
the coherence or synchronicity effects between local regions can
emerge (Gregson 1995) without any CF to induce it, but in lattices
of cross-coupled nonlinear complex trajectories.
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If we use complex nonlinear dynamics, however, we do not need
some of the induction effects of CF on RF which P&S bring in.
Hence we can question the metatheoretical status of the CF/RF
distinction. I agree that to have the system learn as well as to sense
and to perceive, some other upstream layers are required. One
way is to use series which only transmit at local dynamic windows
(Gregson 1993). But, interestingly, if we nest nonlinear dynamics
in slower paced loops which themselves encode boundary condi-
tions restricting the rate of local processing (which, not too
fancifully, are metabolic constraints), then trajectories with a
diversity of periodicities and (apparently) superimposed local
perturbations will arise. Some of these are strictly periodic with a
long inter-signal interval on a constant base and can thus serve as a
biological clock; others have spikes which are aperiodic on a
chaotic base and are reminiscent of epileptic EEG records. One
can generate this diversity by using a collection of attractors
(Gregson & Harvey 1992), but one can equally well do it by nesting
one structurally rich attractor within one or two hierarchically
nested recursive loops. The brain is not short of such structures.

One must be very reluctant to postulate special mechanisms to
induce information-encoding patterns when the biology of the
situation could induce their appearance naturally with quite tiny
parameter changes. The basic nonlinear dynamics, pushed recur-
sively back into stable regions of its phase space, will do many
things spontaneously. It needs compatibility with the underlying
neurophysiology, but not creating seven layers! (sect. 5.7.1).

The answer to P&S’s question (sect. 5.7.2, para. 5) “do the
mechanisms producing the effects of context on the perception
. . . of stimulus elements also play a role in dynamically grouping
those elements?” probably is that the question is back to front. If
we start with nonlinear dynamics evolving in time, then the
grouping can come before the perception and perhaps before the
emergence of consciousness (Ruhnau 1995).

The comment (sect. 5.7.2, Number 3 of major unresolved
issues) that “if grouping is computed dynamically . . . signaled by
relative timing, then such groupings could change rapidly from
moment to moment” is indeed insightful. The serious question is,
what sort of dynamical computing: there is an infinity of possi-
bilities of which I have merely scratched the surface in using G
cubic complex polynomial recursions. Some physicists make use of
tanh mappings for 2`, 1` → 21, 1 1 for similar purposes (Amit
1989). Their A(r,c) (sect. 3.1) is not adequate, and if it leads to
Figure 3 then I am sure it is wrong.

There are no adequate dynamic formalizations in P&S’s paper
but tantalising hints as to which alternatives might be compared.
There is some sort of consensus as to what fundamentals are
needed, and what phenomena need to be accommodated. Phillips
& Singer are to be commended on listing so many hurdles we have
to leap, but I don’t accept that their running shoes have the right
spikes.

Principles of cortical synchronization

Stephen Grossberg
Department of Cognitive and Neural Systems, Boston University,
Boston, MA 02215; steve@cns.bu.edu
cns-web@bu.edu/Profiles/Grossberg.html

Abstract: Functional roles for cortical synchronization in self-organizing
neural networks are described. These properties are best understood by
models that link brain to behavior. Synchrony can express itself differently
in cortical circuits that perform different behavioral tasks. Cortical tempo-
ral properties that seem inexplicable by synchrony are also mentioned.

Phillips & Singer (P&S) nicely summarize key cortical properties
without disclosing the cortical design principles from which they
arise. I will discuss some missing principles.

Let me start with background remarks: “Behavioral success
drives brain evolution.” Properly designed neurons must properly

interact in networks whose emergent properties control behaviors
that autonomously adapt to changing environments. Thus, one
needs to simultaneously link three levels: neuron, network, and
behavior, or else the functional significance of brain data cannot be
tested. P&S do not establish this linkage.

One needs models to do so. P&S emphasize models that explain
data on one level. Models that bridge all three levels obey nonlinear
feedback laws. One thus needs to keep neurons, networks, behav-
ior, and nonlinear feedback models simultaneously in mind. Most
neuroscientists have not been trained to bridge these levels.

“Neo-classical” theories abound instead. For example, informa-
tion theory works in stationary worlds with unchanging states, but
brains adapt to nonstationary worlds and learn new states. Con-
nectionist learning models are mentioned that cannot self-
organize, but brains are self-organizing organs par excellence.
None of these models links realistic brain mechanisms to paramet-
ric behavioral data to support its biological relevance. Models that
do bridge all four levels are hardly mentioned, even though many
data that P&S review were anticipated by them. Nor have the
authors surveyed the model ideas that generated these predic-
tions. I will briefly review some of them now.

Why does synchrony occur on both circuit and system levels?
Concerning circuits: I showed in 1968 that nerve cells avoid losing
sensitivity to fluctuating input patterns (viz., contextual informa-
tion) if they obey membrane equations and interact via on-center
off-surround networks. This result demonstrated that “the unit of
short-term memory is a spatial pattern,” or that these networks
synchronize their activities to process distributed analog patterns
of contextual information (see Grossberg 1982 for discussion and
references).

In neural networks derived from behavioral postulates about
associative learning, cell activities, or short-term memory traces,
interact with adaptive weights or long-term memory traces. These
learning laws are like those of Artola and Singer (1993). I proved,
under general conditions of cell signal processing, feedback, and
modulation of learning that “the unit of long-term memory is a
spatial pattern”; that is, associative networks learn contextually
informative synchronized patterns of activation (Grossberg 1968;
1971; 1982).

These results proved mathematically that synchrony is an emer-
gent property of ubiquitously occurring on-center off-surround
and associative networks, and that synchrony could occur with or
without oscillations. Much of the field of neural networks has
grown from these results, including self-organizing feature maps
and the so-called Hopfield networks.

Concerning systems: Grossberg and Somers (1991) showed that
two types of networks could synchronize quickly: (1) reciprocally
interacting bottom-up and top-down adaptive filters for percep-
tual tuning and categorization, and (2) horizontal interactions for
perceptual grouping. However, these synchronized states have
qualitatively different functional properties. A top-down adaptive
filter cannot activate a target cell unless it also gets a bottom-up
input. This is the well-known ART (adaptive resonance theory)
matching law (for reviews, see Carpenter & Grossberg 1991;
Grossberg 1995), which suggests how top-down feedback atten-
tionally primes and selects consistent bottom-up signals, as in
phonemic restoration and the Sillito et al. (1994) corticothalamic
data. Horizontal grouping interactions can activate target cells that
do not get bottom-up input, as in illusory contour formation. The
association fields of Field et al. (1993) satisfy the constraints on
horizontal interaction that Grossberg and Mingolla (1985) pre-
dicted to explain perceptual grouping data.

P&S overlooked this key difference between adaptive filters and
horizontal interactions, even though it illustrates different func-
tional roles: bottom-up and top-down filtering and matching
mechanisms enable the cortex to learn stably throughout life.
Horizontal interactions for perceptual grouping complete missing
information, as over blind spots and retinal veins. Grouping laws
would destabilize learning if they were used for top-down match-
ing.
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A recent model combines these two types of processes.
Grossberg et al. (1997b) simulated how the laminar, columnar,
map, and network properties of interblob and interstripe cortical
areas V1 and V2 interact reciprocally with LGN to explain percep-
tual grouping data. This model describes functionally different
and experimentally testable roles for adaptive filters and horizon-
tal interactions.

P&S compare horizontal visual interactions with word recogni-
tion. I think they make the same mistake here. A large modeling
literature uses ART to explain speech and word recognition data as
well as visual filtering and categorization data (e.g., Carpenter &
Grossberg 1993; Gove et al. 1995; Grossberg 1987; 1995). Hori-
zontal visual interactions (e.g., Kapadia et al. 1995) have a differ-
ent explanation (Grossberg et al. 1997b).

Various brain timing properties have been modeled using these
distinct mechanisms: groupings persist for variable durations in a
context-sensitive manner (Francis et al. 1994). Top-down match-
ing during word perception can reorganize which word strings are
temporally fused or segregated (Grossberg et al. 1997a). Phillips &
Singer’s synchrony analysis cannot handle such data.

Synchronizing oscillations: Coding
by concurrence and by sequence

V. G. Haase and L. F. M. Diniz
Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil 31270901; haase@fafich.ufmg.br

Abstract: Synchronizing oscillations may be just one case of integration
and/or coding, one which explains associations by concurrence. Under-
standing the sequencing of neural/behavioral events requires a clock
mechanism that imposes structure behind mere associations, and may be
best served by dissociating oscillations and synchronization in terms of
physiologic and computational mechanisms.

Discussing the linguistic typology of aphasias, Roman Jakobson
quoted Karl Pribram as having said that “the two linguistic axes
find their correspondence in the brain: viz. decoding/encoding is
posterior/frontal in the brain; concurrence/sequence (or simul-
taneity/successiveness) is arranged as dorsolateral/mediobasal in
the brain” ( Jacobson 1964, p. 39). It is worth quoting these time
honored speculations to make us aware of the risks of oversim-
plifying. It also helps us remember that, in addition to concur-
rence, sequencing represents an important “association” mecha-
nism. Phillips & Singer (P&S) make an impressive argument
regarding the cellular mechanisms of associations along the con-
currence or simultaneity axis. Although this may be an important
“common computation” in the neocortex, it is not the only one. To
be sure, P&S do not claim it is. However, a full account of the
sequencing of neural and behavioral events may not be possible in
terms of associations alone. Some structure is also required (Lash-
ley 1951).

Structure may be provided by a temporal quantizing mecha-
nism in the brain. According to one research tradition, synchroniz-
ing neural oscillations in the 30–40 Hz range is a possible integra-
tive mechanism (Harter 1967; Pöppel 1970; 1978; 1994). Time is
processed discontinuously in the brain. Each time packet is
defined by the period of oscillatory activity. Inside a given time
quantum, temporal relations are not consciously discernible and
everything that happens during such a moment of time is inte-
grated into a neural/psychological event. Mental activity consists
of sequentially associating such events up to an upper limit of
around 3 seconds. In other words, oscillations may work as a clock
mechanism, a Zeitgeber, and their period may define an integra-
tion time window. Dynamic properties are assured so far as this
mechanism consists of an instantaneously resettable clock with the
properties of a relaxation oscillator (Soutif 1970; Wever 1965).

To integrate neurophysiological observations on gamma oscilla-
tions with the perceptual moment hypothesis, a differentiation

between the physiological mechanisms and computational func-
tions of both oscillations and synchronization is in order. Recent
theorizing about the role of synchronizing gamma oscillations in
neuronal assembly formation seems somehow ambiguous (Singer
1990; 1993; 1994b). In earlier papers by Singer and coworkers,
oscillatory mechanisms played a major role as a synchronizing
mechanism. This emphasis diminished gradually as evidence
accumulated that oscillatory activity is not necessary for synchro-
nization (Tovee & Rolls 1992; Young et al. 1992) and that in some
cases there is no correlation between oscillatory activity and
specific parameters of sensation or movement (Ghose & Freeman
1992; Murthy & Fetz 1992; Sanes & Donoghue 1993). Matters
could be cleared if associations and dissociations between gamma
oscillations and distributed encoding through coherent neural
assemblies and their respective functional and computational
roles were more thoroughly explored.

Theunissen and Miller (1995) called attention to the theoretical
importance of differentiating between an encoding and an inte-
gration time window. Experimental work on the locust olfactory
system also suggests a mechanism through which temporal quan-
tizing of neuronal events may contribute to sequencing mecha-
nisms (see review in Laurent 1996). On a cycle-by-cycle basis,
different neuronal ensembles are defined by their coherent activ-
ity, and information is also contained in the precise temporal
sequence by which these assemblies are updated along successive
periods. This last finding opens the possibility of integrating in one
coherent framework not only oscillations and synchronization, but
also the temporal patterning of discharge trains which has recently
been the subject of increasing interest (Bialek & Rieke 1992;
Krüger & Becker 1991; McClurkin et al. 1991).

Word recognition in the split brain and PET
studies of spatial stimulus-response
compatibility support contextual integration

Marco Iacoboni
Brain Mapping Division, Department of Neurology and Psychology,
University of California, Los Angeles, Los Angeles CA 90095;
iacoboni@loni.ucla.edu brainmapping.loni.ucla.edu

Abstract: The neural substrates of context effects in word perception are
still largely unclear. Interhemispheric priming phenomena in word recog-
nition, typically observed in normal subjects, are absent in commis-
surotomized patients. This suggests that callosal fibers may provide
contextual integration. In addition, certain characteristics of human fron-
tal cortical fields subserving sensorimotor learning, as investigated by
positron emission tomography, provide evidence for contextual integration
not confined to the visual system. This supports the notion of common
aspects of cortical computations in different cerebral areas.

Phillips & Singer (P&S) propose (1) synchronization as a neuro-
physiological mechanism of contextual integration, and (2) context
effects in word perception as behavioral evidence supporting
contextual guidance in cortical computations. Their proposal
would be strengthened by empirical evidence that provides some
possible links between these two phenomena.

That “the cortical algorithm is everywhere the same” (sect. 1) is
obviously an appealing and relevant aspect of P&S’s proposal.
However, the neurophysiological evidence cited in support of
contextual integration is largely confined to the visual system. If
the cortical algorithm is everywhere the same, then there must be
some biological evidence for contextual integration in other do-
mains, motor, cognitive, attentional, and so on.

Interhemispheric lexicality priming in the normal and the split
brain. In lateralized lexical decision between words and ortho-
graphically legal pseudowords, responses are faster and more
accurate for letter strings in the right visual field than in the left
visual field. In normal subjects, responses are more accurate and
faster for two copies of a word simultaneously presented in both
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visual fields, than for a single copy presented in the right visual
field. This phenomenon is absent in the split brain (Mohr et al.
1994).

In normals, when two different letter strings (one cued as the
target, the other uncued as the distractor) are simultaneously
presented in the two visual fields (bilateral presentation), re-
sponses are less accurate and slower, compared to responses to a
single letter string (unilateral presentation). When bilateral pre-
sentations are considered, congruent pairs (both target and dis-
tractor are words or pseudowords) are processed faster and more
accurately than noncongruent pairs (word-nonword and nonword-
word) (Iacoboni & Zaidel 1996). Once again, the split brain seems
not to show these interhemispheric “context” effects (Iacoboni et
al. 1996a; in preparation).

Taken together, these findings seem to support the role of
callosal fibers in contextual integration and may provide a link
between the observed role of callosal connections in synchroniz-
ing activity (Engel et al. 1991) and behavioral contextual effects in
word recognition.

Premotor cortex, spatial stimulus-response compatibility, and
sensorimotor learning. In a positron emission tomography (PET)
experiment on sensorimotor integration and sensorimotor learn-
ing, we used a task that requires the coding of stimuli in extraper-
sonal space and of responses in personal space (spatial stimulus-
response compatibility). In this experiment we manipulated the
mapping of extrapersonal and personal space. This was done by
asking subjects to respond in half of the PET scans with their
hands in the uncrossed position, that is, each hand in its homony-
mous space, and to respond in the other half of the PET scans with
hands in crossed response position, with each hand in its hetero-
nymous hemispace, that is, left hand in right hemispace and right
hand in left hemispace (Iacoboni et al. 1997). During the imaging
session comprising twelve PET scans, four subjects (“switchers”)
switched very frequently 10 times from the uncrossed to the
crossed response position. The other four subjects (“non-
switchers”) switched less frequently. Frequent switching of un-
crossed and crossed response position is known to affect the
sensorimotor learning in this task (contextual interference) (Proc-
tor & Dutta 1993).

As expected, switchers showed a smaller learning effect (as
measured by shortening in reaction times) than nonswitchers. In
spatial stimulus-response compatibility, learning is generally asso-
ciated with blood flow increases in the caudal sector of dorsal
premotor cortex (PMdc) (Iacoboni et al. 1996b). In this region,
learning-related blood flow increases were bigger in nonswitch-
ers than in switchers. Moreover, nonswitchers presented a sig-
nificant activation of the caudal sector of the supplementary
motor area (SMA-proper) (Picard & Strick 1996), compared to
switchers. This suggests that SMA-proper provided contextual re-
inforcement to PMdc to facilitate learning acquisition in non-
switchers. This contextual effect would have been subserved by
the robust corticocortical connection between SMA-proper and
PMdc (Matelli et al. 1991).

The rostral sector of dorsal premotor cortex (PMdr) is also
strongly connected with PMdc (Matelli et al. 1991). PMdr is the
premotor region that codes the explicit stimulus-response associa-
tion rule in spatial stimulus-response compatibility (Iacoboni et al.
1997). Thus, PMdc fits the model of local processor with contex-
tual guidance outlined by Phillips & Singer in section 1.2.1 of the
target article. PMdc would receive receptive field (RF) inputs
from PMdr and contextual field (CF) inputs from SMA-proper.
PMdc would use contextual inputs from SMA-proper “to influ-
ence the confidence with which decisions are made on the basis of
the RF evidence,” as provided by PMdr. Thus, these PET data
seem (1) to fit with the model, and (2) to provide biological
evidence for contextual guidance that is not restricted to the visual
system.

Internal context and top-down processing

Peter König, Carl Chiang, and Astrid von Stein
The Neurosciences Institute, San Diego, CA 92121; peterk@nsi.edu;
cchiang@nsi.edu; astein@nsi.edu www.nsi.edu/users/konig

Abstract: Recent experimental work suggests that the concept of contex-
tual fields should be generalized to allow the modulation of local informa-
tion extraction by both external and internal context. The external context
relates to the coherent information of the stimulus; the internal context
refers to the parts of this information which are relevant for behavior. This
dual interaction, present at every level of the hierarchy, requires a
fundamental unit of processing more complex than a single neuron
appears today. We argue that the cortical column supplies the required
mechanisms for a separate top-down and bottom-up processing and allows
for interaction without destructive cross-talk. This flexibility might explain
why the same basic architecture of a cortical column is used in the whole
isocortex.

In Phillips & Singer’s target article, the “context field,” which is
used to extract coherent information, is defined primarily by the
properties of the external stimulus. Examples of “context fields”
are features of the visual stimulus outside the classical receptive
field or surrounding letters/words in a lexical task. These para-
digms place the emphasis on the passive processing of external
stimuli. However, humans and animals alike cannot be described
simply as stimulus-response machines. For a human or an animal,
even more important than the detection of coherent information
in the environment is the extraction of those parts which are
relevant to its behavior. The reaction to stimuli depends very much
on internal variables like motivation, attention, and intent. In our
view, in order to serve as a general framework for the cortical
dynamics, the concept of “context fields” must be generalized to
include the internal state of the animal.

This generalization leads to the prediction that if the modula-
tion of feature extraction by the “context field” is mediated by
synchronized activity, as is the central claim of the target article,
the behavioral relevance of the stimulus and the expectancy of the
animal should influence the synchronization patterns in sensory
areas. Indeed, recent experimental evidence supports this notion
(Chiang et al. 1996; von Stein et al. 1996). To determine the role of
synchronization in top-down guided binding we simultaneously
recorded field potentials from different cortical layers in primary
visual cortex (area 17) and sensorimotor association cortex (area 7)
in behaving cats. They were presented with two different visual
stimuli and trained to respond by either watching one (no-go
stimulus) or by pressing a lever after seeing the other (go stim-
ulus). We found that: (1) compared to the no-go situation, the go
stimulus induced a much stronger synchronization between the
two areas; (2) this increase in synchronization between area 17 and
area 7 was correlated with the correct performance of the task;
(3) contrastingly, a highly salient but irrelevant stimulus failed to
induce synchronized activity. Thus, the coupling between these
two areas was dependent on the behavioral context. The synchro-
nization pattern not only reflects Gestalt laws – corresponding to
bottom-up synchronization – but can be influenced decisively by
the internal state – corresponding to top-down processing.

The interaction between external stimuli and internal variables
as described in the previous paragraph places a considerable
computational burden on the processing units. The generation
and evaluation of synchronous events must be kept separate for
multiple sources and targets at each level. From present knowl-
edge, this seems a hard task for a single neuron to accomplish. It
has been argued before (Edelman 1987), that groups of closely
coupled neurons are the basic cortical processing units, which
then can form larger assemblies (Hebb 1949). For a number of
reasons we think that a cortical column implements such a group
and performs the tasks described above:

1. Under physiological conditions, coincidence detection is the
dominant processing mode of cortical neurons (König et al. 1996a)
and can produce precisely timed output (Mainen & Sejnowski
1995).



Commentary/Phillips & Singer: Cortical computation

692 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

2. Due to the termination of afferents from feedforward –
relating to the external context – and reentrant connections –
relating to the internal context – onto neurons in different layers
(van Essen & Maunsel 1984), synchronous events originating from
different levels of the processing hierarchy can be evaluated
independently.

3. Along similar lines, the projection neurons with different
targets are segregated in different layers. Thus binding can be
specific for targets on lower or higher levels of the hierarchy,
avoiding global synchronization.

4. In vitro experiments demonstrate the complex fast dynamics
within a column upon electrical stimulation (Langdon & Sur
1990).

5. In the experiments described above (Chiang et al. 1996; von
Stein et al. 1996), a layer-specific synchronization between areas at
different levels of the visual processing hierarchy has been found.
Furthermore, during presentation of expected stimuli, the inter-
action between the different areas occurred in particular in the
alpha range, while during perception of novel stimuli, synchroni-
zation in the gamma range was predominant.

These experiments demonstrate that the cortical column is
capable of operating on a millisecond time scale, and that the
temporal dynamics depends on the match between expectation
and stimulus. Thus, any description of cortical microcircuitry
(Douglas & Martin 1991a) must be extended to include fast
temporal processes.

In sum, the cortical column appears to be a rather flexible
device, able to extract information which is dependent on internal
as well as external context. It is this unique functional feature that
may explain why the processing unit is used with so few changes in
all areas of the neocortex, and may make it a true “common
foundation for cortical computation,” which the target article sets
out to find.
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Glossing over too much

Gin McCollum
R. S. Dow Neurological Sciences Institute, Portland, OR 97209;
mccollum@ohsu.edu
www.ohsu.edu/som-NeuroScience/sys/mccollum.html

Abstract: Although Phillips & Singer’s proposal of commonalities seems
sound, information theory and artificial neural network modeling omit
important detail. An example is given of a distributed neural transforma-
tion that has been characterized mathematically and found to have both
overall commonalities and differences of detail in different regions. P&S’s
contextual field is compared to inclusive regions in a formalism relevant for
modeling bodily-kinaesthetic intelligence.

Phillips & Singer’s (P&S’s) idea that context changes the way we
register incoming information has to be true. For example, some-
times we read for comprehension (skipping over typographical
errors) and sometimes we proofread. Also, it is plausible that there
are basic operations common to all cortical and cognitive pro-
cesses. However, their methodology – information theory and
artificial neural network modeling – is unequal to the task of
finding those common, basic operations. Their methods may apply
to micro-information, but not to macro-information: Who wrote
that symphony? How do I ski down this wooded slope?

Precision in modeling. More formal structure is needed at
intermediate levels to allow conclusions about basic operations,
both cortical and cognitive. It is true that information theory can
be used in both the cognitive and the neural domains, but
information theory is too broad-brush to yield specific conclu-
sions. There is mathematical structure in the ensemble-to-
ensemble transformations of neural activity communicating to,

within, and from the cerebral cortex. Once that structure is
characterized mathematically, the Shannon information can be
derived, if it is needed, from the more accurate formalism.

For example, we have characterized mathematical structure in
cerebellar climbing fiber tactile receptive fields (Castelfranco et
al. 1993). Within the particular mathematical structure, one can
determine what specification is conveyed out of what range of
possibilities: the Shannon information. The mathematical struc-
tures of sets of receptive fields differ from one part of the nervous
system to another. (See Schwartz, 1977, for a mathematical char-
acterization of other receptive fields, including some in the cere-
bral cortex.) P&S propose that there are commonalities across the
cerebral cortex with differences of detail. The example of cerebel-
lar receptive fields has that feature also; it shows up clearly when
the receptive fields are characterized mathematically (Castel-
franco et al. 1993).

P&S propose synchrony as an important mechanism, with or
without rhythmicity. Synchrony and rhythmicity occur also in the
cerebellar cortex (Llinás & Sasaki 1989; Simpson et al. 1996). The
mathematical characterization of receptive fields suggests a subtle
relationship between synchrony and rhythmicity (McCollum
1997).

These remarks hold also for the output of a neural ensemble, for
movements, and for cognitive processes. Linguistics already has a
formal characterization which should be used. For example,
rather than describing the /l/-versus-/r/ difference verbally (sect.
5.7.2), it can be formalized in a number of ways, including
phonetically, geometrically, algebraically, or from a movement
point of view. Mathematical characterizations at those levels will
yield the cognitive information flow in various cognitive systems.

Managing degrees of freedom in learning. Even though some
learning can be described as approaching some target perfor-
mance, a more general description is elaborating a set of behav-
ioral or imaging strategies (e.g., McCollum et al. 1995). [See also
Nashner & McCollum: “The Organization of Human Postural
Movements” BBS 8(1) 1985.] The cerebral cortex’s role of grasp-
ing connections and envisioning possibilities can then be ex-
pressed in terms of a more general form of P&S’s CFs and RFs:
forming CFs from RFs and relating RFs to (already existing) CFs.
We have formalized movement design problems in analogous but
mathematically more specific terms (McCollum 1994). In an
abstract space including all the degrees of freedom required for
movement, a particular movement pattern (for example, speaking
English) structures the space in a particular way. Another move-
ment pattern (for example, speaking German) structures the
space in a different way. Potential movements are grouped into
regions of movement space that specify a particular movement.
For example, pronouncing /r/ involves a certain region of a
movement space, which is specified by the overall phonetic
structure of the language, as expressed in movement. (Similar
remarks could be made about the perceptual aspect.)

More precision is needed in specifying what is lost and what is
gained in isolating movement patterns (P&S’s CFs), such as the
overall phonetic structure of a language or the proper pronuncia-
tion of /r/. P&S refer to reduction in connection numbers in terms
of “data compression” (sect. 3.2), “reduce redundancy” (sect.
1.2.1), and “discover the relevant” (sect. 3.4.1), as if no information
will be lost. In contrast, Bernstein (1967) acknowledged the loss of
information in reducing degrees of freedom when producing
movement. When the variety of activity is reduced in structuring
the flow of perception or movement, both redundancy and infor-
mation are lost – a complex situation.

Even though P&S’s idea of common operations across the
cerebral cortex and cognitive processes is probably correct, it
would be better pursued with a bigger toolbox. We need to have
more respect for the complexity of the processes involved.
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Topologic organization of context fields
for sensorimotor coordination

Pietro Morasso, Vittorio Sanguineti, and Francesco Frisone
Department of Informatics, Systems and Telecommunications, University of
Genova, 16145 Genova, Italy; morasso@dist.unige.it
www.laboratorium.dist.unige.it/STAFF/motasso.html

Abstract: In field computing a topologic organization of CFs is necessary
to support sensorimotor planning. A simple model of cortical dynamics can
exploit such topologic organization.

We agree with Phillips & Singer (P&S) that “networks of local
processors with contextual guidance can in effect discover distal
variables and relationships by discovering mutual information in
diverse data-sets” (sect. 6.5, para. 1). However, although this may
be enough for understanding a good many sensory/perceptual
systems, it is probably ill-suited for dealing with the guidance of
action in sensorimotor coordination. What is needed there is a
stronger notion than mutual information, which is essentially
passive: something which captures the causality and circularity of
purposive action.

Learning target-directed movements implicitly requires a Pi-
agetian self-supervised paradigm, although the local learning rule
may appear unsupervised (Morasso & Sanguineti 1996). The
essential feature for enabling cortical maps to handle the Piagetian
reaction circulaire is a capacity for topologic organization which
allows an internal representation of external, distal space to
emerge in a coordinate-free way (Sanger 1994). A good deal of
work has been carried out on the ways in which simple, self-
organizing heuristics can produce such internal representations,
from the early work of Kohonen (1982) to the Martinetz &
Schulten’s (1994) more recent Topology Representing Network
and its application to modeling cortical map dynamics (Sanguineti
et al. 1997). Although it might be argued that self-organizing maps
are just a variant of the CF formalism, our opinion is that there is a
subtle but critical gain in embedding CFs in a topological struc-
ture. Such extended CFs can do a lot more than optimally
modulating the information transmitted by the RFs: they can
perform field operations like diffusion, dispersion, convection,
and so on, which allow the cortical areas to behave like a field
computer (Amari 1983; MacLennan 1997).

To illustrate the concept, consider the following generic dy-
namic model of a cortical region

dVi
x

dt
1 giV i

x 5 f (hi
lat 1 hi

ext) (1)

where the i-th local processor (or cell assembly, or cortical col-
umn) is characterized by an activity level Vi and two kinds of inputs
(hi

lat, hi
ext), which correspond to intra-cortical and external connec-

tions, respectively. The equation simply says that Vi evolves under
the action of three competing influences: (1) self-inhibition
(weighted by gi), (2) net input hi

lat coming from the set of lateral
connections inside the same cortical region, and (3) net input hi

ext

determined by thalamo-cortical or cortico-cortical connections
across different cortical areas. The hi

lat term is intended to express
the massive lateral connections, which are symmetric and excita-
tory. This is a recurrent input which triggers the coupled dynamics
of the whole network, according to global processes such as
diffusion, relaxation, and so on. The hi

ext term refers to the set of
input neurons projecting to the given column (e.g., thalamic
neurons or output neurons from other cortical areas). These
connections are unidirectional, which means they are asymmetric
and cannot support recurrent dynamics: as a consequence, what
hi

ext expresses is a smoothed version of the pattern of activity
present in the projecting region.

As shown by Sanguineti et al. (1997), if sufficient gating inhibi-
tion is embodied by the nonlinearity on the right-hand side of the
equation, the qualitative behavior of this kind of system can be

characterized as follows: (1) stable states of the system are identi-
fied by focused islands of activation (or population codes), in
register with a local maximum in the input distribution; (2) if the
input distribution shifts or jumps to a new pattern, a diffusion
process is initiated which spreads around the initial cluster of
activity, in a wave-like manner; (3) this activity automatically starts
coalescing again as soon as it finds some kind of ridge or peak in the
input distribution; (4) if such a distribution has many peaks, that is,
several possible targets, the system automatically selects the
closest one, with the notion of distance being dictated by the
topologic organization of the lateral connections.

This is a different mechanism for assuring that the CF connec-
tions do not corrupt the nature of the RF of each processor; it
incorporates a geometrically meaningful navigation capability in
the cortical representation, which can explain invariant features of
motion planning such as the near-straightness of reaching move-
ments (Morasso 1981). Interesting and complex dynamic behav-
iors can be obtained if we couple two such maps, allowing the
output of one to become the input of another, via a suitable set of
cross-connections.

Testable predictions about the nature and shape of wave-like
phenomena on the cortical area in sensorimotor planning can be
derived from this scheme. It remains to be seen if this mechanism
of navigation in cortical maps is also meaningful for grouping,
dynamic binding, and other perceptual processes.

’Tis all in pieces (separate RFs and CFs), all
coherence gone

Ernst Neibura and Marius Usherb
aZanvyl Krieger Mind/Brain Institute and Department of Neuroscience,
The Johns Hopkins University, Baltimore, MD 21218;
niebur@jhu.edu russell.mb.jhu.edu/cns/cnslab.html
bDepartment of Psychology, University of Kent at Canterbury, Canterbury,
CT2 7NP, United Kingdom; m.usher@ukc.ac.uk
snipe.ukc.ac.uk/psychology/people/usherm/index.html

Abstract: We argue that the separation between CF (contextual field) and
RF (receptive field) in relation to the NMDA (N-methyl-D-aspartate)
system is empirically questionable and that it is functionally unnecessary.
In addition, the proposed suppression of unexpected information will in
many cases be counterproductive.

Phillips & Singer (P&S) are to be commended for their attempt to
put the concept of context onto a more physiologically concrete
basis than is customary in this field. Understandably, they are more
successful in this attempt when they talk about visual perception
than in the second major field they tackle, human language.
Nevertheless, we take issue with their specific implementation
and with its computational rationale, as summarized below.

NMDA cannot mediate synchrony at short time scales. The
authors assume that unlike RF connections, CF connections are
based on receptors of the NMDA type. It is difficult to see how
such connections could mediate synchrony on the time scale of
“few milliseconds” (sect. 1.2, para. 2) since the fastest time
constants for the closing of NMDA receptors are 35–66 msec
(Carmignoto & Vicini 1992), and hundreds of milliseconds are
more typical values (Lester et al. 1990). A “simultaneous” increase
in firing probability, on this time scale, due to NMDA-mediated
CF connections is not suitable for mediating the proposed syn-
chronizing effect since it will only contribute to increase the
baseline of the cross-correlation function but will not generate
narrow peaks (of width less than, say, 25 msec).

Inconsistent context is not always suppressive. P&S assume
throughout the target article that the function of the CF is to
confirm the hypotheses formed on the basis of previous input.
Sensory input from the RF is enhanced when it is consistent with
these hypotheses and suppressed otherwise (sect. 1.2.1). We agree
that this is the case in many situations, and P&S do provide
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additional evidence in support of this function, but this cannot be
the whole truth.

To use a standard example: if a dangerous predator appears
unexpectedly, P&S’s model would predict that information about
this unexpected event would be suppressed, since it is inconsistent
with the present context and expectations. Obviously, the opposite
is the case; such information is processed with a higher priority.

It is possible to reconcile these two apparently contradictory
capabilities without invoking a separation between the processing
of context and content information. We have suggested recently
(Stemmler et al. 1995) that the difference between situations in
which the context enhances a sensory input and those in which it
suppresses it may be the intensity of the input in question. We
hypothesized that weak input will be enhanced if it is consistent
with its context; strong input, on the other hand, does not benefit
from such an enhancing influence and may be suppressed by
similar surround stimuli. This is consistent with psychophysical
data ion threshold facilitation (Polat & Sagi 1993) and apparent
contrast (Cannon & Fullenkamp 1993). Our functional argument
is that this strategy yields maximal advantage in both cases: if the
input is too weak to “stand on its own,” the situation may be saved
by taking contextual information into account. If the signal is
strong, there is no reason to ask for confirmation from the
background. On the contrary, a strong signal can be dealt with
more efficiently if redundant information (provided by the con-
text) is suppressed.

Multiplicative CFs are unnecessary. We agree with the authors
that synchrony is an excellent marker for relational information
provided by the context. In previous work (Stemmler et al. 1995;
Usher & Niebur 1995), we demonstrated that this can be achieved
by regular (non-NMDA, thus fast) lateral connections which are
both excitatory and inhibitory. If such connections balance excita-
tion with inhibition, they modify the synchronization of discharges
without much affecting the response strength (both inhibitory and
excitatory connections can synchronize neural activity; see, e.g.,
Van Vreeswijk et al. 1994). Finally, we emphasize that context does
not need to affect processing in a multiplicative way if context
effects are small relative to the stimulus (Usher & Niebur 1996).
In fact, evidence from letter perception contradicts the multiplica-
tive assumption (Massaro 1989; McClelland 1991). These data
show parallel lines (for z-score of choice probability versus the
perceptual continuum) implying additive and independent effects
of context and stimulus.

To conclude, we believe that introducing a new distinction
between different kinds of processing (RF versus CF) is not a
productive strategy in the search of common principles of infor-
mation processing.
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Synchronization, binding, multiscale
dynamic processing, and neuron sociology

Paul L. Nunez
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Abstract: Well-posed questions about information processing may re-
quire physiologically based, quantitative models of large scale neocortical
dynamic function. “Synchronization” of this dynamics can be viewed in
different contexts of the binding problem.

Dynamical systems and cortical information processing. Phil-
lips & Singer (P&S) illustrate that, given our meager understand-
ing of the behavior of even relatively small neural “circuits,”
forming well-posed questions about cortical information process-

ing is challenging. For example, exactly what is meant by “common
foundations” in the heading of section 2, “Arguments for and
against common foundations for cortical computation.” Or con-
sider the cited conclusion of Macphail (1987), “all problem-solving
abilities of nonhuman animals arise directly from a common basic
associative process.” These phrases contain strong tautological
facets. In fact, when reading the cognitive science literature, this
physical/neuro scientist is often reminded of some of the writings
of Newton’s contemporaries in which concepts for which we now
have distinct mathematical definitions (e.g., force, momentum,
and energy) were used almost interchangeably, thereby severely
limiting communication between scientists.

How can we forge stronger connections between the subfields
of neuroscience and pose questions about cortical information
processing in a more precise and broader scientific context? P&S
cite literature on artificial neural networks and information theory,
which may provide interesting metaphors and suggest useful
conjectures. But these fields appear far too limited to provide any
kind of general framework in which to view cortical function.
Alternately, we may view neocortex as a complex, multiscale,
dynamical system. We might first search for agreement between
theoretical models of neocortical interaction and physical data
(EEG, MEG, PET, MRI, etc.) which can be partly predicted with
combined physics/physiology/anatomy approaches, independent
of cognitive data. Next, we should identify the most robust correla-
tions between cognitive and physical data. Thus, we can infer
correlations between the theoretical models and cognitive events.
Once this has been accomplished, we will be in a far better
position to form well-posed questions about, for example, cortical
information processing, questions that suggest unambiguous, new
experiments.

“Synchronization” of neural populations. P&S make a compel-
ling case for the importance of synchronized population codes and
cite experimental evidence for synchronized potentials recorded
from intracranial electrodes. In complex systems, however, the
general idea of “synchronization” requires much closer scrutiny
because it is both scale and frequency dependent.

One other measure of synchrony is coherence, which measures
phase consistencies at different frequencies between two signals.
For example, scalp-recorded EEG coherence typically decreases
in the alpha band during transitions from resting to states of
mental calculation, while in the same data, theta band coherence
increases (Nunez et al. 1997). Furthermore, coherence between
two neural populations can depend critically on population size
(Nunez 1995). Very large scale coherence between cortical loca-
tions separated by 10 or 20 cm (measured with scalp electrodes)
can be high, whereas small scale coherence (measured with
intracranial electrodes) between the same locations are likely to be
small (Bressler 1995; Silberstein 1995). For example, subdural
coherence measured with 2 mm diameter electrodes typically falls
to zero at all frequencies for electrode separations greater than
about 2 cm (Bullock et al. 1995). Thus, some electrophysiologists
suspect that moderate to high EEG scalp coherence is due only to
passive spread of currents in the head volume conductor. We now
have conclusive evidence, however, that long range EEG scale
coherence can be large even when volume conduction effects are
removed (Nunez 1995a).

In these scalp experiments, coherence between neural popula-
tions of roughly 107 (high resolution EEG or MEG) to 109

(conventional EEG) is measured. By contrast, intracranial record-
ings may involve tissue containing anything between one and
perhaps 106 neurons, depending on electrode size and location.
“Synchronization” (as well as other dynamic measures) between
cortical regions depends on both spatial scale and EEG oscillation
frequency. This point apparently accounts for misunderstandings
between clinical or cognitive electroencephalographers and ani-
mal electrophysiologists. One conjecture is that cortical informa-
tion processing can occur simultaneously at multiple scales, and
the rules governing such processing may be scale dependent. For
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example, when expressed in manageable form, the rules (e.g.,
equations) that govern interactions between fluid elements (e.g.,
in weather systems) are quite different from the rules that deter-
mine molecular interactions within the fluid, even though the
former are partly dependent on the latter. It would appear that any
successful neocortical dynamic theory must also be closely tied to
its appropriate measurement scale, and that theories formulated
at different scales are likely to look very different.

Mechanisms of cortical information processing may perhaps be
illuminated by considering other complex systems. However, such
physical systems typically lack properties critical to neocortical
dynamics, which severely limits their use as metaphors. From a
dynamic viewpoint, the most important neocortical properties
appear to include: competition between functional integration
and functional segregation; multiscale interactions involving neu-
rons, minicolumns, macrocolumns, and so on; multiple interaction
lengths, including the size of synaptic cleft through the length of
the longest corticocortical fibers; and multiple time scales, includ-
ing synaptic delays and anterior/posterior corticocortical propaga-
tion times. These basic physiologic time scales must somehow be
compatible with much longer scales associated with conscious
experience, short-term memory, and so on.

A sociological metaphor is appropriate to illustrate the dy-
namics underlying neocortical behaviors. For example, person–
person interactions are both local and nonlocal. Important inter-
actions take place across spatial scales, as when information
aggregated by a TV station is transmitted to individuals. Commu-
nities at different locations and scales have varying degrees of
isolation so that the rules of sociological dynamics are inhom-
ogeneous and scale dependent. Adopting P&S’s parlance, one may
ask if “common foundations” underlie information processing in a
marriage, a football game; a revival meeting, political convention,
a city, and so on. There are certainly many common features, but at
what point do “features” become “foundations,” and how impor-
tant is spatial scale to the rules governing information processing?

Neocortical dynamic theory. Various approaches to neocortical
dynamic theory at the large scales appropriate for comparisons
with both scalp EEG and cognitive data are reviewed in Nunez
(1995). Such theories attempt to integrate data obtained at small
scales (e.g., single neuron behavior) with theoretical tools and
macroscopic anatomy/physiology so as to predict generic aspects
of large scale dynamic behavior, that is, general expected behavior
which is relatively independent of assumptions about poorly
known neurophysiological parameters. The methods are comple-
mentary and include a statistical mechanics of neocortical interac-
tions (Ingber 1985; 1995), local “circuit” approaches in which PSP
rise and decay times are critical (Freeman 1975; van Rotterdam et
al. 1982; Wilson & Cowan 1973; Zhadin 1984), and global theory in
which delays in corticocortical fibers play a dominant role (Katz-
nelson 1981; Nunez 1974). More recently, local and global theo-
ries have been shown to combine naturally ( Jirsa & Haken 1996;
Nunez 1989; 1995; Wright & Liley 1996), so some brain states may
be more strongly influenced by local dynamics (functional seg-
regation) and other states more dependent on global dynamics
(functional integration). Also, plausible connections between lo-
cal/global theory and the statistical mechanical theory have been
advanced (Ingber 1995; Nunez 1995a).

In contrast to artificial neural networks (which require free
parameters), such physiologically based theories have made cor-
rect qualitative, and in some cases, quantitative predictions of
generic neocortical dynamic behavior. For example, zero phase lag
of field potentials over remote regions having no direct connec-
tions and simultaneous local/global resonances near 10 and 40 Hz
occur naturally in such global systems (Andrew & Pfurtscheller
1996; Nunez 1995a; 1995b; Silberstein 1995). The occurrence of
multiple global oscillation modes (identical resonant frequencies
at all locations) suggests a possible mechanism for “binding by
synchrony” (Singer 1993). For example, oscillations generated in
local cortical regions A, B, and so on (internal “pacemakers”) can

drive multiple global modes. These enhanced global oscillations
can then facilitate remote cell assemblies C, D, and so on, even
when they involve overlapping tissue (refer to pp. 694–702 of
Nunez, 1995a, for mathematical support).

In summary, I find several of P&S’s qualitative arguments
compelling, but I suggest that many are better addressed in the
context of physiologically based, dynamic theories, even though
such theories can provide only very crude representations of
actual neocortical dynamic processes.
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Synchronicity and its use in the brain
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Abstract: We briefly review the long-standing ideas about the use of
synchronicity in the brain, which rely on Donald Hebb’s views on cell
assemblies and synaptic plasticity. More recently the distinction among
several timescales in the description of neural activity has become a focus
of theoretical discussion. Phillips & Singer’s target article is criticized
mainly because it does not distinguish these timescales properly and hence
does not really address the questions so intensely debated today.

The idea that temporal coincidence of neural activity is translated
into togetherness has a long history (see Palm 1982). In sensory
areas of the brain, it means that neurons that are activated
simultaneously signal co-occurring events in the outside world.
Neurons that signal events which often occur together should also
belong together internally, for example, by strengthening mutual
excitatory connections through Hebbian synaptic plasticity (Hebb
1949). In areas further away from the direct sensory projection this
coincidence of activity still means togetherness. It is efficiently
detected by a typical neuron because synchronous activation of
different afferents of a neuron is much stronger than asynchro-
nous activation (Abeles 1982); it may be further enhanced by
Hebbian synaptic plasticity. These ideas, of course, call for mecha-
nisms of synchronization. Here we have to rely on theoretical
arguments and in order to relate them to experimental observa-
tions we have to specify the timescale on which synchronization
has to be achieved.

As a matter of fact, there are several timescales that have to be
specified: (1) The time window for synchronicity; (2) the amount
by which mechanisms of synchronization can shift time differ-
ences between neural events; (3) the time it takes to establish
synchronization in the ongoing activity, and (4) the time it takes to
change the network connectivity (Hebbian learning) due to pre-
vious synchronization.

One would ordinarily expect at least one order of magnitude
between one timescale and the next. For example, if we take the
synchronicity window in the range of 1–2 msec, then (2) should be
at least 10 msec, (3) 100–200 msec, and (4) at least several
seconds. These timescales are probably the ones that most re-
searchers would agree on today (see also Palm 1993; Wennekers &
Palm 1997).

Theoretical ideas concerning synchronization of neural activity
have been put forward in two contexts: in the context of coupled
oscillations, well-established theories of synchronization have
been developed either for abstract oscillator networks (Kuramoto
1984) or more realistic spiking neurons (review in Gerstner 1995);
in the context of synfire-chains as a simplified description of the
physiological spreading of neural activity, the issue of synchroniza-
tion has been one of the starting points (Abeles 1991).
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In the experimental literature, the idea of internally generated
synchronization lies at the heart of concept pairs such as “stimulus-
locked versus stimulus-induced” synchronization (Eckhorn 1994)
or “raw” versus “stimulus corrected” correlation (cf. Aertsen et al.
1989). A peak in the raw correlation between two neurons can still
be explained by the two neurons being locked to the stimulus,
whereas a peak in the stimulus corrected correlation can only be
generated internally even if it is stimulus-induced, that is, if it
occurs only for certain stimulus situations.

In the context of the ideas outlined above the target article is
extremely vague exactly at the following interesting points.

(1) The different time-scales are not well distinguished in the
theory. New stimuli are sampled at every time increment or every
few in the simulations (e.g., P&S’s Fig. 10). This suggests a step
size of a large fraction of a stimulus epoch, which is clearly
inappropriate for revealing any spike timing effects in the msec
range. Nevertheless, the outcome of the simulations is explained
on a short scale, intentionally scale (1), since it is discussed in
relation to experimentally observed spike synchronization.

A consistent interpretation with a step size of 1 msec is not
possible, because stationary firing probabilities close to one
(reached after an initial transient phase) would imply rates of 1000
Hz. Physiological rates of about 50 Hz would imply a step size of
about 20 msec, which is scale (2). But then again spike timing on
scale (1) cannot be resolved. Lowering the stationary probabilities
to .05 by rescaling the neural squashing function would also lead to
50 Hz for a step size of 1 msec, but does not solve the problem.
Due to the probabilistic spike generation, cells then fire – on
average – every 20 timesteps, but not necessarily synchronously.

(2) The target article does not propose a mechanism for syn-
chronization. In response to a sudden stimulus onset, local pro-
cessors linked by “coherent” context fields raise their firing proba-
bilities simultaneously. This network response is taken as evidence
for synchronization. However, since it is input driven, it can at best
be related to stimulus locked signals in experiments (Eckhorn
1994). Moreover, it does not imply internal synchronization: in
response to a stimulus consisting of two widely separated bars,
subsets of cells driven by each of the bars simultaneously increase
their rates. This implies neither that cells between those subsets
are synchronized (which is not the case in experiments), nor that
they are synchronized inside any of the sets (which they appear to
be). Similarly, the stationary state achieved in the simulations after
the stimulus locked response also fails to reveal synchronization.
Cross-correlograms between any two “coherent” cells during this
phase are flat, neither peaked nor oscillatory, because the neurons
fire in every time-step. Thus stimulus induced synchronization
seems to be completely absent.

(3) In fact P&S’s simulations show that contextual guidance is
possible without oscillation or internal synchronization, since the
external synchronicity (on a firing rate level) provided by the
stimulus is sufficient. This observation accords well with P&S’s
note that the simulations work the same way whether spiking or
graded response neurons are used (sect. 3.1, last paragraph).

In summary, the target article takes up and discusses some very
interesting issues concerning synchronicity and synchronization.
However, in the computer simulations it neither provides mecha-
nisms for such synchronization nor shows the effects of it. It only
considers synchronicity provided by the external stimuli and does
not clearly distinguish the time-scales. Thus the theoretical level of
the discussion is brought back to the time of Hebb’s original books.

Schizophrenia as a model of context-
deficient cortical computation

Steven M. Silverstein and Lindsay S. Schenkel
Department of Psychiatry, University of Rochester Medical Center,
Rochester, NY 14642; sslv@cvs.rochester.edu

Abstract: Phillips & Singer’s compelling presentation is weakest in its
demonstration of commonalities between sensory plasticity and higher
forms of learning and behavior. We propose that available data on
schizophrenia can provide such evidence, because of the presence of
impairments in a number of functions central to their model, and strong
relationships between these dysfunctions and behavior.

Schizophrenia as a model of context-deficient cortical compu-
tation. Phillips & Singer’s (P&S’s) compelling presentation is
weakest in demonstrating commonalities between basic and
higher level learning mechanisms. We argue below that data on
information processing in schizophrenia can provide such evi-
dence. In particular: (1) schizophrenia is characterized by abnor-
malities in a number of functions (e.g., perceptual organization)
that Phillips & Singer argue are manifestations of a common
cortical processing algorithm; (2) relationships exist between
these impairments that would be predicted by the model; (3) the
proposed neurophysiological bases of these impairments are con-
sistent with the model; and (4) the behavioral and symptomatic
features of the disorder that are associated with these impairments
suggest important extensions of the range of learning phenomena
that may be incorporated into the model.

Perceptual organization appears to be a clear manifestation of
the computational process they discuss. Conditions under which it
fails to occur may therefore provide useful data regarding its
underlying mechanisms. In several studies, schizophrenic patients
have demonstrated impaired perceptual organization of visual
(Silverstein et al. 1996a) and auditory (Silverstein et al. 1996b)
stimuli. Schizophrenic patients are also impaired in their ability to
alter perceptual organization of ambiguous stimuli based on
current context (Silverstein et al. 1996b), or to develop perceptual
organization for unstructured patterns after repeated exposure
(Silverstein et al. 1996b). In another case, schizophrenic patients’
perceptual organization impairment was reversed after a contex-
tual enhancement, suggesting that a greater than normal degree of
contextual input is required for perceptual organization to occur in
schizophrenia (Silverstein et al. 1996a). Comparing the cortical
activity of schizophrenic and control subjects during perceptual
organization tasks may thus clarify the mechanisms involved in
perceptual grouping, and the hypothesized ability of these mecha-
nisms to adapt to current context.

Schizophrenic patients are also characterized by reduced con-
textual influences in functions such as memory (Calev et al. 1983),
attention, and language processing (Cohen & Servan-Schreiber
1992). Thus, schizophrenia may involve a generalized disruption
of the proposed cortical processing algorithm (possibly the result
of a pervasive cytoarchitectural and/or neurotransmitter abnor-
mality). Further evidence for this comes from an examination of
the relationships between perceptual organization ability and
language production in schizophrenia (Knight & Silverstein, in
press). Consistent with predictions, degree of perceptual organi-
zation impairment was significantly correlated with levels of disor-
ganized and associative thought disturbance, the two forms of
thought disorder that best reflect the idea of a loss of context
during speech production. Schizophrenia thus provides multiple
opportunities for exploring specific and general aspects of a
cortical computation dysfunction. In addition, examining the nor-
malization of these impairments during pharmacologic treatment
may reveal important information about the physiology of normal
cortical computation.

P&S hypothesize that the physiological mechanisms underlying
context-dependent changes involve NMDA receptor functioning.
In this regard, it is interesting that a recent model of schizophrenia
points to NMDA receptor hypofunction as an etiological factor
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(Olney & Farber 1995). This model is based, in part, on the ability
of NMDA antagonists to produce the positive (i.e., hallucinations,
delusions) and cognitive/disorganized (i.e., thought disorder, dis-
orientation) symptoms of schizophrenia in healthy controls. In two
studies, we found that both context-related impairments in per-
ceptual organization and a failure to develop perceptual organiza-
tion after repeated exposure were significantly associated with
positive and cognitive/disorganized symptoms in samples of
schizophrenia patients (Knight & Silverstein, in press; 1996c;
1996d). These data support the hypothesis that normal perceptual
organization and other context-related phenomena involve
NMDA receptor activity.

Evidence that more complex forms of learning such as social
skill acquisition are related to basic computational processes
comes from consistent findings that perceptual organization im-
pairment is found almost exclusively in patients with histories of
poor premorbid (i.e., prior to the onset of symptoms) social
functioning. Moreover, the perceptual impairment is most pro-
nounced among these patients when they are experiencing an
acute exacerbation of their illness (Silverstein et al. 1996a). These
data suggest that a large subgroup of persons who develop schizo-
phrenia may be characterized by: (1) a developmental failure to
benefit from context, as manifested in impaired social cue recogni-
tion and social competence; and (2) a more severe disruption in
cortical computation associated with illness onset and later periods
of acute psychosis (characterized by glutamatergic and dopa-
minergic dysregulation), which leads to disorganization in basic
functions such as perceptual organization.

P&S state that the adaptive phenomena they discuss are imple-
mented by the ability of processors and networks to conform their
activity to the statistical structure inherent in the external world by
maximizing the transmission of information that is predictably
related to the context in which it occurs. We suggest that this
function may be the basis of reality testing, the absence of which is
a defining feature of the acute phase of schizophrenia. If acute
schizophrenia is characterized by a general failure to flexibly adapt
distributed processing on the basis of external context, this could
explain the occurrence of symptoms such as hallucinations, which
appear to be the result of internal context dominating perception.
The onset of hallucinations in acute schizophrenia (and attenua-
tion during pharmacologic treatment), and the relationship be-
tween hallucinations and perceptual organization again suggests
that schizophrenia is a fertile environment for exploring a number
of relevant issues, including the avoidance of hallucinations in
normal word processing noted by Phillips & Singer. We hope these
comments highlight the usefulness of integrating their model with
the rich data on information processing in schizophrenia.

On the normalization of coherent contrast
and the semantics of synchronization

Darragh Smyth
University Laboratory of Physiology, Oxford University, Oxford OX1 3PT,
United Kingdom;
darragh.smyth@physiol.ox.ac.uk www.physiol.ox.ac.uk/rdms

Abstract: This commentary describes some extensions of the Phillips &
Singer model of contextual interactions to cater for the contrast- and
extent-dependency of surround facilitation and suppression. I also com-
ment briefly on some semantic problems with what exactly the role of
synchronization might be: input preprocessing or output postprocessing?

Phillips & Singer (P&S) present an excellent review of the evi-
dence for facilitating influences on processing and learning from
outside the classical receptive field (RF). I will comment on some
extensions to their model of contextual effects on the rate of spikes
while pondering some of the claims about effects on the timing of
spikes.

There are two features about contextual stimuli in vision that
have been neglected in the model of contextual guidance de-

scribed. First, there is evidence for suppression when the sur-
round is stimulated by large-field textures (references in sect. 1.3,
paras. 1 and 2; also Kastner et al. 1997). Second, there is plenty of
evidence for contrast-dependent long-range facilitation and sup-
pression (Levitt & Lund 1996; Mizobe et al. 1996; Polat & Norcia
1996; Weliky et al. 1995). P&S choose to attribute the former to
the classical receptive field (RF) while the latter is not catered for
at all with the monotonic model described in section 3 of the target
article.

Attributing the effects of texture suppression and pop-out to the
classical RF may be purely a semantic point but I feel it is more
appropriate to explain as much of the data on contextual interac-
tions as possible within the same model. Excitatory and inhibitory
long-range interactions are mediated via layer 2/3 cells. This is
reasonably homogeneous throughout cortex. Recently it has been
shown that although large surround textures induce response
suppression, the amount of suppression depends on the contrast
between the center and surround in the orientation and direction
domains (Kastner et al. 1997), as distinct from the luminance
domain. Thus surrounds with orthogonal orientations or opposite
directions of motion induce larger firing rates than homogeneous
textures. This may suggest that there is a sort of receptive field
structure in the orientation-direction-position space. I feel that it
is more convenient to interpret contextual fields as having differ-
ent subfields of ON or OFF polarity across the orientation,
direction and topographic maps in area 17. There may be similar
subfield segregation of lateral connections in other parts of the
brain if the model of contextual guidance is a common cortical
algorithm. Thus, in effect, contextual fields are performing exactly
the same type of integration as classical RFs, except that they have
a modulatory influence on the local response, instead of driving.

The contrast-dependency has been explained by differential
effects of excitatory and inhibitory inputs via lateral connections
(Stemmler et al. 1995). However, this model depends on different
levels of noise in excitatory and inhibitory cells and thus may not be
so applicable. An alternative model is to apply contrast normaliza-
tion to cell responses. Cell responses are half-squared and nor-
malized by the overall activity of the other cells within the
hypercolumn (and beyond, as suggested by this extension). This
model has been successfully applied to cells within hypercolumns
to explain the effects of superimposed stimuli of different orienta-
tions (Heeger 1993). It may be necessary to extend this model to
lateral connections. This may explain why large-field textures give
lower responses. It must be pointed out that these two models are
not mutually exclusive as there is some evidence for both occur-
ring in the brain.

To summarize this point, P&S’s view of contextual interactions
can be extended to include all such interactions, facilitative and
suppressive, while preserving the concept of maximizing coherent
variation. This is achieved by considering modulatory contextual
fields (CFs) to be integrating across ON and OFF subfields in the
output feature space. In addition, some form of contrast-
dependent normalization is required to explain the non-
monotonicity of the experimental results. Effectively, lateral inter-
actions are modulating and normalizing signals according to the
presence of coherence in the feature space, in contrast to their
background.

My second point concerns P&S’s description of the effects of
context on the timing of spikes. The argument appears to be a little
fuzzy so I would like to clarify some issues. It is continuously
argued that synchronization is a dynamic grouping mechanism.
However in section 1.2.3, paragraph 3, P&S imply that RF filters
can signal more than one feature using different dynamically
grouped subsets of their inputs. Does this not undermine the
notion that a RF is a filter for one particular feature that is hard-
wired into its anatomical configuration of excitatory and inhibitory
inputs? In section 1.2, paragraph 3, they rightly argue that syn-
chronization improves integration and therefore signaling. This is
probably necessary for responding to weak stimuli and/or in the
presence of noise. However is there any general evidence that the
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filter of a RF is not hard-wired into the anatomy, or could it
actually be something dynamic as P&S suggest?

It is too easy to view synchronization as solving the “binding”
problem. One could argue that this implies the role of a homun-
culus in perception. If RFs respond to singular features only then
synchronization plays an important role in the integration of weak
or noisy signals at the next stage. This is not mutually exclusive
with the possibility of synchronized population codes; it simply
depends on the level of abstraction at which the researcher
decides to view the code. We need to think of experiments to test
the function of synchronization as a presynaptic mechanism rather
than a post-synaptic one. The brain is a multi-layered system and
so with synchronization occurring at all levels (V1, V2, MT, etc.), it
is not simply some function of the “outputs” of a neural network.
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Information theory: The Holy Grail
of cortical computation?

James. V. Stone
Wellcome Research Fellow, Psychology Department, Sheffield University,
Sheffield, S10 2UR, England;
stone@aivru.sheffield.ac.uk www.shef.ac.uk/psychology/stone

Abstract: Simple hypotheses are intrinsically attractive, and, for this
reason, need to be formulated with utmost precision if they are to be
testable. Unfortunately, it is hard to see how Phillips & Singer’s hypothesis
might be unambiguously refuted. Despite this, the authors have provided
much evidence consistent with the hypothesis, and have proposed a
natural and powerful extension for information theoretic approaches to
learning.

Characterising the “Holy Grail” of cortical computation. The
idea of a common foundation for cortical computation was ex-
plored as early as 1970 by Marr (Marr 1970), and has been
discussed by a number of authors since (Creutzfeldt 1978; Doug-
las & Martin 1994; Ebdon 1993; Stone 1996a; Szenatgoathai
1978). To date, the idea has remained an intriguing possibility,
rather than a testable hypothesis. Despite the efforts of Phillips &
Singer (P&S) to place this hypothesis on a firm footing, however, it
is not obvious how one would set about falsifying the hypothesis in
the form provided in this paper. The authors have not indicated
what type of experimental findings would suffice to refute the
hypothesis. For example, if it were possible to demonstrate that
two cortical regions used qualitatively different operations, would
this constitute a refutation? For a number of reasons, I think it
would not; but this is due to my own interpretation of the
hypothesis, and not a logical imperative of the hypothesis as
expressed in the paper. The issue is not whether such a finding
would constitute a refutation, but rather, whether any finding is
capable of unambiguously refuting the hypothesis.

For example, P&S note that, “although ‘cortical columns’ are
not central to the hypotheses developed here, criticism of this idea
suggests limitations upon anatomical arguments for common-
alties” (sect. 2.1, last para.). This is a fair point, but there is no clear
indication of what types of arguments could not also suggest
limitations on their use. Surely a necessary first step in searching
for the “Holy Grail” of cortical computation is to establish what
form it might take, and what forms it could not take. Whilst the
search for common foundations for cortical computation is un-
doubtedly a worthwhile endeavour, it would be helpful to establish
conditions under which to call off the search, and conditions under
which we might shout, “Eureka!”

Is maximising information enough? Several authors have de-
vised neural network models which learn by maximising informa-
tion theoretic measures (Becker 1996; Linsker 1988; Stone

1996b). As noted by Phillips & Singer (P&S), such rules operate in
the absence of any ethological considerations, so that even vari-
ables which are irrelevant to an animal’s behaviour would be
extracted by such rules. This appears to be a fundamental limita-
tion of information theoretic models, which either extract any
variables (Linkser 1988), or only variables which conform to
certain assumptions implicit in the learning algorithm (Becker
1996; Stone 1996a). By introducing the idea of cross-stream
contextual inputs as constraints on learning, P&S have effectively
overcome an important limitation on conventional information
theoretic approaches. Whilst others have argued that information
maximisation methods are appropriate only for low level sensory
processing (presumably because they tend to extract all variables
in the input data), P&S argue that contextual information can be
used to extract selectively only those variables directly relevant to a
particular set of behaviours. This important insight opens up the
possibility that a single principle can be used to account for
learning of low level perceptual invariances, as well as “higher
order” variables (such as the association between the shape and
taste of a fruit). Moreover, it suggests a natural extension to a
whole class of neural network models which learn by explicitly
maximising information theoretic quantities (Becker 1996; Lin-
sker 1988; Stone 1996b).

Maximising Shannon entropy is hard. On a more technical
level, the general approach adopted for generating learning rules
shares with others the assumption that information theoretic
quantities are suited to extracting variables implicit in “sensory”
data streams. Whilst information theory provides a principled
method of deriving learning rules, it is not the only, nor necessarily
the best, means to this end.

In its “raw” form, Shannon entropy takes no account of the
temporal ordering of inputs. A number of authors (Barlow 1996;
Becker 1996; Foldiak 1991; Stone 1996a; 1996b) have argued for
the use of learning rules based on the tendency of distal variables
to vary smoothly over time. Indeed the BCM learning rule
discussed by P&S (sect. 3.5, para. 3) is important precisely because
it takes advantage of the temporal sequence of inputs. More
recently, Becker (1996) has used temporal smoothness as an
explicit assumption in deriving an information theoretic learning
rule. Whereas P&S’s learning method ignores temporal contiguity
of inputs, Becker’s method ignores cross-stream constraints. It
remains to be seen if these two approaches can be profitably
combined, and if the resultant learning method can be related to
learning in the neocortex.
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Information: In the stimulus
or in the context?

Giulio Tononi and Gerald M. Edelman
The Neurosciences Institute, San Diego, CA 92121; tononi@nsi.edu

Abstract: The distinction between receptive field and conceptual field is
appealing and heuristically useful. Conceptually, it is more satisfactory to
distinguish between information from the environment and from the
brain. We emphasize here a selectionist view that considers information
transmission within the brain as modulated by a stimulus, rather than
information transmission from a stimulus as modulated by the context.

Contextual field and reentry. The key distinction between
receptive field (RF) and contextual field (CF) has several appeal-
ing features, not the least of which is its simplicity. As long as RF
input is identified with that relayed through forward, voltage-
independent connections, and CF input with that relayed through
backward or lateral, voltage-dependent connections, one has sim-
ply the physiological translation of an anatomical or biochemical
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distinction. The heuristic value of this distinction is supported by
large-scale simulations which, in much the same way as envisioned
by Phillips and Singer (P&S), explicitly introduced backward and
lateral voltage-dependent connections alongside the usual for-
ward connections capable of driving neurons (e.g., Lumer et al.
1997; Sporns et al. 1991; Tononi et al. 1992). These simulations
illustrated many of the “contextual” effects of reentry, the process
of ongoing, recursive neural signaling occurring via lateral and
backward connections (Edelman 1978; 1987). These effects in-
clude its correlative, constructive, and associative properties:
reentrant signaling can modulate the timing of neural response
across neuronal groups, generate new response properties, and
influence plastic changes by making them sensitive to signals from
many brain regions (Tononi et al. 1992; 1996). As P&S point out,
the notions of reentrant signaling and of contextual input have
much in common.

At the experimental and conceptual levels, the demarcation
between RF and CF is less clear. How reliably can one differenti-
ate experimentally between RF and CF for units in higher sensory
areas, or in motor and premotor areas? Conceptually, the distinc-
tion between the firing of such units, which according to P&S
would indicate the presence of specific features in the external
environment, and the so-called “confidence” for that firing, which
would indicate its coherence with the local context, is problematic:
the assumption that the firing of a given unit represents specific
features in the environment, even “distal features,” has been
severely questioned. Discriminating between firing and “confi-
dence” of firing is an idealization that could only work if there were
an unequivocal distinction, over a short time scale, between active
and inactive neurons. Rather than attempting to distinguish be-
tween direct and contextual input at the conceptual level, it seems
much safer to distinguish simply between the extrinsic mutual
information between a brain unit and the sensory input, and the
intrinsic mutual information between a unit and the rest of the
brain (Tononi et al. 1996).

The role of context in perception and action: “Beyond the
information given.” P&S’s account has the considerable merit of
making their formulations explicit by using general information-
theoretical measures. They suggest that at the time scale of
perception and action (mutual) information transmitted by the RF
is modulated by information transmitted by the CF. This is a clear
improvement over typical information-processing approaches
which consider RF inputs exclusively.

There are other reasons, however, to abandon altogether the
metaphor of the brain as an information processing device (Edel-
man 1987), while still using information-theoretical measures.
Anatomically, most neurons receive signals from other neurons
rather than directly from sensory inputs. Physiologically, the brain
is spontaneously active, and is so already in utero. Phenome-
nologically, dreaming and imagery are striking demonstrations
that the adult brain can produce meaning without any direct input
or information from the periphery. Turning the traditional em-
phasis on sensory input on its head, we have considered the
information that is exchanged within the brain in the absence of
external inputs (Tononi et al. 1994). This is measured by neural
complexity, which is the sum of the average mutual information
between each particular subset of brain units and the rest of the
brain. Complexity is high only if individual brain units are not only
specialized to signal different events, but also distribute these
signals efficiently to the rest of the system. Thus, a complex brain is
a collection of specialists that talk to each other, and complexity
strikes an optimal balance between segregation and integration of
function. It seems to us that the distinction between segregation
and integration of function, and their reconciliation in terms of
neural complexity, captures the conceptual gist of the distinction
between RF and CF in a way that is perhaps more flexible and
theoretically better founded.

How should one consider, then, the fate of the signals transmit-
ted for the sensory sheets during perception? In our view, such
extrinsic signals convey information not so much in themselves,

but by virtue of how they modulate the intrinsic signals that are
constantly being exchanged within the brain along reentrant
pathways. These constitute an intrinsic informational context
which dominates the response to the extrinsic signals. In
information-theoretic terms, for a small value of the extrinsic
mutual information between an individual stimulus and the brain
there will be a large change in the intrinsic mutual information
among subsets of units within the brain (Tononi et al. 1996). Thus,
it is not so much CF input that modulates RF input, but extrinsic
information from a stimulus that modulates intrinsic information
within the brain. We have shown that the extent to which this
modulatory action is successful reflects the experience that the
brain has of a set of related stimuli. This can be measured by a
quantity, complexity matching, which is the change in neural
complexity as a result of the encounter with the stimulus (Tononi
et al. 1996). According to this analysis, the distinction between
transmission and storage of information in the brain vanishes and,
at every instant, the brain goes far “beyond the information given”
(Bruner 1972).

The role of context in learning: “Adjustment of inner to outer
relations.” At the time scale of learning, P&S propose that brain
units should increase the mutual information relayed by their RF
input that is coherent with the mutual information relayed by their
CF input, a principle they call “coherent infomax.” This is another
step forward with respect to proposals that deal exclusively with
maximizing extrinsic mutual information. It is also, however, only
as valid as the distinction between RF and CF. Since most neurons
receive most of their input signals through reentrant circuits, and
since the brain is spontaneously active, it may be more appropriate
again to turn matters on their head and take a selectionist as
opposed to an information-processing view of learning (Edelman
1987; 1993). Such a selectionist view is perfectly compatible with
information-theoretical analyses: learning is conceptualized as an
overall increase in the intrinsic mutual information between
subsets of brain units, modulated by information from the external
world, rather than vice versa. This corresponds to an increase in
neural complexity in response to extrinsic stimuli, that is, to an
overall increase in complexity matching (Tononi et al. 1996), thus
representing the information-theoretic equivalent of an “adjust-
ment of inner to outer relations” ( James 1890). As an increase in
complexity satisfies the joint requirements of segregation and
integration at the shorter time scales of perception and action, an
increase in matching satisfies the joint requirements of categoriza-
tion and association at the longer time scales of learning. In
practice, an increase of matching over time will occur if there are
neural mechanisms such that, on average, the mutual information
between subsets of brain units increases more when extrinsic
input is present than when it is absent. A biochemical difference
between backward (lateral) and forward connections is a way to
approximate this goal. Another possibility, not considered by P&S,
is that the activity of certain neuromodulatory systems with diffuse
projections, which is high during waking and low during sleep,
influences the mechanisms mediating plastic changes in the brain
(Cirelli et al. 1996).

Global context and diffuse ascending systems. A key reason
for the usefulness of contextual influences in learning is what is
known as the bias/variance dilemma (German et al. 1992): given a
limited amount of time, it is difficult, in a completely unsupervised
manner (without some bias), to categorize or cluster input signals
with high variance purely on the basis of their statistical properties.
Local context, mediated by reentrant input, provides part of this
bias: what is learned preferentially is what fits with the local
context. But other sources of bias are also important. A key source
is provided by the aforementioned activity of diffuse ascending
systems or value systems, which signal the occurrence of events
that are salient for the entire organism and thereby represent a
form of global context. The noradrenergic and serotoninergic
systems, for instance, diffusely innervate most of the brain, fire
tonically during waking but much less or not at all during sleep,
fire phasically during salient events, and release neuromodulators



Commentary/Phillips & Singer: Cortical computation

700 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

that can influence both synaptic activity and plasticity. We have
suggested that, in a process called value-dependent learning,
synaptic changes should depend on both local correlations
(whether mediated by direct or reentrant connections) and on
correlations with the firing of diffuse ascending systems signaling
salient events. This form of learning has been shown in simulations
to account for adaptive learning and for map registration in the
brain (Friston et al. 1994; Reeke et al. 1990; Rucci et al. 1997;
Tononi et al. 1992b). While this is just another example of the
pervasive influence of local and global context on neural activity
and plasticity, it clearly indicates how essential it is to go beyond a
strict stimulus-driven, information-processing approach to brain
function. As demonstrated by P&S’s admirable effort, there is no
alternative but to consider, both theoretically and experimentally,
the context provided by the entire brain and by its history.

Synthesizing synchrony versus
dissecting dissonance

Alessandro Treves
Programme in Neuroscience, SISSA, 34013 Trieste, Italy;
ale@limbo.sissa.it www.sissa.it

Abstract: A series of intriguing experiments has emphasized the need to
understand synchronization effects. Information theory is proving to be an
important tool for understanding the computations performed by cortical
circuits. Nevertheless, Phillips & Singer’s target article fails to provide a
convincing correlation between synchronous firing and information trans-
mission, which could well prove to be anticorrelated.

Synchronization, be it in neuronal firing in epileptic tissue or in
goose-stepping by parading soldiers, rarely indicates intelligent
behavior. In contrast, available quantitative evidence suggests that
the tremendous computational power of the brain arises out of the
functional diversity, or dissonance, among its constituent units.
Phillips & Singer (P&S), participating in everyone’s search for
basic principles in cortical function, Solomonically assign half the
cortex’s connections to the generation of independent neuronal
responses, and half to their linkage. Should we concede that half of
our brain’s precious connections are devoted to goose-stepping?

P&S concisely review a series of very interesting experiments
from Singer’s and other labs, which raise the issue of the interac-
tion between the amount of zero-lag synchronization among
sensory cortical neurons and the nature of the input being per-
ceived. They also sketch an information-theoretic formalism, by
Phillips and coworkers, that makes it possible to derive learning
rules in which weight modification depends to a varying degree on
a subset of the inputs to a postsynaptic unit, the so-called contex-
tual inputs. Nowhere in the target article, however, do they
attempt to establish evidence for a relation between synchroniza-
tion and the amount of information transmitted by units which
learn through such modification rules.

Perhaps aware of the weakness of their central claim, which is
the one direct (RF) input they provide to the debate on basic
principles of cortical operation, P&S surround it with distantly
related (CF) arguments, from a variety of other scientific streams,
which together take up most of the target article. They thus set the
stage for a first experimental falsification of their claim: if the
commentaries on the target article turn out not to be fully
synchronized, it means that contextual effects can indeed affect
the population response (a trivial observation), but by means other
than synchronizing it!

Two cornerstones are still missing for the construction P&S
attempt. The first is the use of the correct information-theoretic
measures not just to derive efficient modification rules applicable
to formal network models in simulations, but to extract quantita-
tive analyses of the operation of real neurons in actual experi-
ments. This is now a blooming enterprise (see, e.g., Golomb et al.
1997; Panzeri et al. 1996; Rolls et al. 1997), of which P&S appear

curiously unaware. The second, a cornerstone which sits directly
upon the first, is understanding how to extract information mea-
sures from the activity of population of cells, in a way that directly
probes the specific contribution of synchronization or, in general,
precise spike timing, to information transmission. One very small
piece of anecdotal evidence I can provide on this issue is from
quantifying the amount of information that populations of 30–60
simultaneously recorded hippocampal cells transmit about the
position of the rat, in experiments done in Tucson (see, e.g., Treves
et al. 1996). When I randomly shuffled, cell by cell, time bins
which corresponded to the same position of the rat, thereby
simulating nonsimultaneous recording, little changed, quan-
titatively, in the very robust (and informative) population code,
expressed thus both by simultaneous and nonsimultaneous activity
vectors. A great deal of serious work obviously has to be done
before evidence can emerge on the actual contribution of precise
spike timing. Smart new procedures are necessary, both to address
the limited sampling problem (Treves & Panzeri 1995) and to
manipulate external correlates, in order to dissect the differential
contribution to mutual information of the enormous number of
variables available in the firing of populations of cells. Until then,
P&S can only claim to entertain a hope that binding up cells into
synchronization will prove to squeeze more out of them than
letting them free, a hope which I am afraid is unlikely to be
fulfilled.
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On the computational basis
of synchronized codes

DeLiang L. Wang
Department of Computer and Information Science and Center for Cognitive
Science, The Ohio State University, Columbus, OH 43210-1277;
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Abstract: For scene analysis, it is important to ask the question of how
synchronized population codes – the basic representation employed in the
target article – are generated. Recent computational advances have
resolved the critical challenges of rapid synchronization with local coup-
ling and rapid desynchronization. The synchronized codes make real
contributions to tackling the problem of scene analysis.

A fundamental aspect of perception is its ability to group elements
of a perceived scene into coherent clusters (objects). This ability
underlies perceptual processes such as perceptual organization,
figure/ground segregation, and separation of multiple objects, and
it is generally known as scene analysis (segmentation). Regarding
this problem, Phillips & Singer (P&S), in their general framework
of cortical computation, have answered the following two basic
questions explicitly. (1) How are coherent clusters represented in
the brain? (2) What is the neurobiological substrate for the
representation? Regarding the first question (the “binding prob-
lem”), P&S argue for synchronized population codes. That is, an
object is represented by the synchronized firing activity of the
scattered neurons coding different features of the object (Abeles
1982; Milner 1974; von der Malsburg 1981). As to the second
question, P&S distinguish between receptive fields (RF) and
contextual fields (CF), and argue that lateral CF connections
linking RFs are the neurobiological substrate for the synchronized
codes.

There is another major question that needs to be addressed in
the same context: (3) Given CF connections, how can the syn-
chronized codes be generated? The question is a computational
one, and is important for two reasons. First, it must be answered in
order to explain how the brain analyzes various scenes in P&S’s
framework. Second, addressing this question would amount to
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constructing a computational system that does automatic scene
analysis: an objective of great significance in its own right. Auto-
matic scene analysis is a fundamental task of machine perception
and a tremendously challenging engineering problem. This ques-
tion, however, is not treated in any depth in the target article;
dynamic grouping is touched upon in section 3.4.3, but, from the
computational perspective, the functionality is simple and it is
unclear how the networks generalize to handle realistic input
patterns. On the other hand, there is a large body of literature that
deals exclusively with this question, and major progress has been
made. My commentary is focused on this issue, as it has important
implications on the computational foundation of the target article.

The discovery of long-range synchronous oscillations in the
visual cortex (Eckhorn et al. 1988; Gray et al. 1989) triggered many
computational studies on the synchronized codes. There are
two major computational challenges. The first concerns how to
achieve rapid synchronization within a population of locally
coupled oscillators.1 Earlier models for achieving phase synchrony
generally rely on all-to-all connections. However, a network with
full connectivity indiscriminately connects and synchronizes all
activated oscillators; it lacks topological information (Sporns et al.
1991; Wang 1993b). The indiscriminate grouping problem hinders
this class of models from addressing real images. The second
challenge concerns how to achieve fast desynchronization among
different groups of oscillators representing distinct objects. We
regard the rapidity of synchrony and desynchrony as particularly
important, not only because speed is critical for real-time scene
analysis but also because perception is very rapid. It is known that
human subjects can segment and identify an object in a small
fraction of a second (Biederman 1987; I. Biederman, personal
communication, 1994). This suggests that both synchrony and
desynchrony must be achieved in just a few cycles if the syn-
chronized codes of 40g Hz rhythms (Eckhorn et al. 1988; Gray et
al. 1989) are the underlying mechanisms. Because of these two
challenges, the synchronized codes have not contributed much to
building successful artificial neural systems for analyzing real
images.

Somers and Kopell (1993) and Wang (1993a; 1995) have inde-
pendently recognized the severe limitations of widely used si-
nusoidal oscillators in generating global synchrony based on local
coupling; they proposed using different oscillator models to over-
come the problem. More recently, Terman and Wang have pro-
posed and analyzed locally excitatory globally inhibitory oscillator
networks (legion) (Terman & Wang 1995; Wang & Terman
1995). In a legion network, each oscillator is modeled as a
standard relaxation oscillator with two time scales (see also Somers
& Kopell 1993). Local excitation is implemented by lateral coup-
ling and global inhibition is realized by a global inhibitor. Whether
an oscillator can oscillate is determined by the external stimulus to
the oscillator; the connections in legion modify only the phases
of oscillators. Thus, the legion network is fully compatible with
the general RF/CF framework of the target article. The network
exhibits a mechanism of selective gating, whereby an oscillator
jumping up to the active phase rapidly recruits the oscillators
stimulated by the same pattern, while preventing other oscillators
from jumping up. We have proven that, with selective gating, the
network rapidly achieves both synchronization within groups of
oscillators that are stimulated by connected regions and de-
synchronization between different groups. In sum, the legion
network provides an elegant solution to the two challenges out-
lined above.

The ability of legion in producing the synchronized codes
presents a unique approach to addressing scene analysis. Wang
and Terman (1997) applied legion to segmenting gray-level
images, and reported very promising results. For gray-level im-
ages, each oscillator corresponds to a pixel, and two neighboring
oscillators are connected with a weight proportional to corre-
sponding pixel similarity. As an example, Figure 1A shows one
gray-level image, and Figure 1B shows the result of segmentation.
The entire image is segmented into 23 regions. Each region

Figure 1 (Wang). A. A gray-level image consisting of 160 3 160
pixels. B. The result of segmentation by a legion network with
160 3 160 oscillators. From Wang & Terman, 1997.

corresponds to a different density in the figure, indicating the
phases of oscillators. In the simulation, different regions “pop out”
alternately. As can be seen from Figure 1B, almost all major
regions in Figure 1A are segmented. The black scattered regions
in the figure represent the background that always remains inac-
tive (for details see Wang & Terman 1997). Other images, includ-
ing MRI (magnetic resonance imaging) images and texture im-
ages, have also been successfully segmented.

In summary, I think it is important to ask the question of how the
synchronized codes can be generated. Major advances have been
made in addressing this question. In particular, the critical chal-
lenges of rapid synchrony based on lateral coupling and rapid
desynchrony have been successfully resolved and these syn-
chronized codes make real contributions to tackling the hard
engineering problem of scene analysis. These advances lay a sound
computational ground for the theoretical framework of Phillips &
Singer.
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NOTE
1. An “oscillator” here is used as a mathematical notion, and this does

not necessarily imply an oscillatory (periodic) outcome. An oscillator is
compatible with a spiking neuron.

Local attractor dynamics will introduce
further information to synchronous
neuronal fields

J. J. Wright
Brain Dynamics Laboratory, Mental Health Research Institute of Victoria,
Parkville, Melbourne, Victoria 3052, Australia;
jjw@cortex.mhri.edu.au www.mhri.edu.au/bdl

Abstract: Simulations and analytic considerations show that synchronisa-
tion occurs in delay neural networks at the surrounds of externally driven
sites. In the synchronous fields, network transmission has a static transfer
function and H(XuR,C) is minimal. But when autonomous local states with
attractor dynamics develop in the network, H(XuR,C) is not minimized.
Physiological realism may therefore require some modifications in appli-
cation of coherent infomax.

Basic assumptions. Phillips & Singer’s (P&S’s) arguments,
while possessed of considerable explanatory power, assume that
small domains of cortex can be described as filters. In the sensory
neurophysiological experiments in which synchronous oscillation
is commonly observed (e.g., Singer & Gray 1995), CF inputs do
not corrupt transmission of RF data (sect. 1.2) and this justifies
their attribution to small cortical locales of a transfer function
incapable of introducing significant fresh information to the on-
ward data-stream. But is this always justified?
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Mechanisms of synchrony. P&S are careful to separate dy-
namic mechanisms of synchronous oscillation from the informa-
tion theoretic implications of the phenomena. However, their
assumption of a static network transfer itself forces constraints on
possible mechanisms. These mechanisms are both controversial
and (probably) diverse, and include input of synchronous subcorti-
cal signals (Steriade et al. 1993), intrinsic oscillations (Llinas et al.
1991) including “chattering cells” (Gray & McCormick 1996),
inhibitory-inhibitory oscillations (Traub et al. 1996), entrained
nonlinear limit cycles (Tass & Haken 1996), and so on.

A mechanism which requires minimal assumptions and which
appears to be a ubiquitous property of coupled neuron-like delay
elements has recently been reported. This finding emerged in
relation to numerical models of EEG activity (Wright & Liley
1996) and is reported in detail in Wright (1997). Essentially, when
any two points of a matrix of elements are driven with indepen-
dent, asynchronous noise inputs, in approximation of RF inputs,
zero-lag synchrony in the neighbourhoods of both sites of input
rapidly develops. The extent of the fields of cosynchronous activity
reflects dynamic gain factors analogous to inputs of nonspecific
cortical activation, as well as structural (cortico-cortical) connec-
tivity. Correlation functions derived from the simulation’s state
equations (Robinson et al. 1997a; 1997b) confirm that the phe-
nomenon depends only on dendritic and axonal delays and gains.
Findings qualitatively resemble experimental findings summa-
rised in Singer & Gray (1995), although approximation to the
complex conditions of experiment is as yet crude.

In the conditions in which this simulation has been studied,
pulse densities remain at a low level and any small cortical locale is
described by a static transfer function. But the simulation also
exhibits extreme instability of pulse firing rate, moving from a low
pulse density to one of runaway excitation with minimal perturba-
tion. Thus, if the model is adequately parameterised and otherwise
valid, then local or global mechanisms must exist in the real
physiological situation, to regulate stability much more tightly.
Likely stabilising mechanisms were discussed in the BBS com-
mentary in Wright and Liley (1996) and have been partially
incorporated in simulations in continuing work.

It now appears that the operation of such stabilising mecha-
nisms can lead to localised autonomous, self-organising states.
When locales in the network are sufficiently excited to enter
autonomous activity they generate outputs which are not describ-
able as a static transform of their inputs.

Local autonomous states and choice of objective function:
When is coherent infomax appropriate? P&S’s coherent infomax
(sect. 3.2) depends upon the minimisation of the Shannon infor-
mation at a cortical site not accounted for by RF and CF inputs.
But what if activity at the site in question cannot be described in
terms of a transfer function, because local activity has entered
some self-organising state? Such states are very likely in real
cortex, as described in Amit’s (1995) models of neurophysiological
findings in delayed response. The limit cycle and/or chaotic
dynamics of these more complex conditions imply that H(XuR,C)
is likely to be high, and not accountable as noise.

In future developments of P&S’s models, perhaps autono-
mously active sites ought to be included within the definition of
RF inputs. “RF” would then describe both intrinsic and extrinsic
sources of information, while coherent infomax would still apply to
transmission of information throughout the wider, lower firing
rate, domains of the cortex. This generalisation might help avoid
problems when experimental data obtained in more active cogni-
tive processes is considered. Moreover an important putatative
property of coherent infomax – the discovery of distal variables
and relationships in diverse data sets (sect. 6.5) – might also apply
to interactions between patches of autonomous, self-organising
cortical activity, as well as to features from the environment. Such
a future model might offer the possibility of introducing the
decision-making capacity of attractor dynamics to the association
capacity of synchronous fields.

Context dependent feature groups, a
proposal for object representation

Rolf P. Würtz
Institut für Neuroinformatik Ruhr-Universit ä Bochum D-44780 Bochum,
Germany; rolf.wuertz@neuroinformatik.ruhr-uni-bochum.de
www.neuroinformatik.ruhr-uni-bochum.de/ini/people/rolf/top.html

Abstract: The usefulness of contextually guided processors is investigated
a little further. A more general use for binding V1 cell responses than the
one in Phillips & Singer’s target article is proposed, which takes into
account that strong responses of these cells can mean more than the
presence of lines and edges. The possibility of different grouping depend-
ing on the activities of neighboring cells is essential to the approach.

Phillips & Singer’s (P&S’s) target article is good news for a
computational modeler for several reasons. First, it is rare luck to
have a computational concept which is approved by a psychologist
and a neurobiologist. Second, this concept is presented at a level of
abstraction and simplicity which is not usually adopted by biolo-
gists, although it is a crucial prerequisite for reasonable computa-
tional models. Such a paradigm can spare (for the time being) the
complicated (and computationally expensive) simulation of the
nitty-gritty of synchronization. Instead, the proposed processors
can be used to show that relatively simple networks can do
something useful.

Now, why should new cortical processors be necessary at all?
After all, it is clear that the brain consists of neurons, and
computational models of neurons abound on all levels. Still, from
an esthetic point of view, the system properties observed in the
brain should arise “naturally” from the properties of the simple
processing elements used. Most prominent among these system
properties is invariant recognition in the various sensory modal-
ities. Although much research has been done, there seems to be no
convincing way to get this property from conventional neural
networks.

Multiplicative synapses (see the exponent of the transfer func-
tion, first paragraph in sect. 3.1), have been popular in computa-
tional neuroscience for a long time. What is interesting in P&S’s
paper is that multiplication occurs only between the CF and RF
inputs. The proposed processors are ideal for invariant recognition
by dynamic routing (Olshausen et al. 1993; 1995). In these articles,
contextual guidance is used to test hypotheses about translation
and scale of simple objects, with special cells being responsible for
the mapping between input and stored model. A drawback of
these models is that they operate only on very simple images with
good contrast and few ambiguities. The RF properties of V1 cells
are not part of these models.

Let me propose a model that creates robust object descriptions
from the responses of simple and orientation-selective complex
cells. An important property is that these responses must mean
different things depending on the response distribution of neigh-
boring cells. Concretely, they can stand for the presence of line
elements, texture elements, or local pieces of structure.

In the first case, cells sharing the same RF center and orienta-
tion but of different RF size must be grouped. These groups code
for the presence of a line/edge element and, as the authors
mention, they in turn must group with neighboring groups of the
same or slightly different orientation.

In the other cases, all cells sharing the same center must be
grouped to code for a local texture or structure element (Lades et
al. 1993; Würtz 1995; 1997). If those groups mean a texture
element, they should group with neighboring ones that have the
same activity distribution to yield areas of constant texture. For
structure elements, top down information about the local struc-
ture of known objects must be used in order to bind the right
elements to an object description. Such a description usually also
contains boundary lines, that is, groups of the first type in a
suitable spatial arrangement.

Such an approach at object description can be more robust,
because constraints like the need for a closed boundary can be
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relaxed. An object can be also be described by an imperfectly
closed boundary together with constant texture or known struc-
ture.

Now, what is required for this? First, a possibility to group V1
cells without destroying their filtering properties, which is clearly
provided by P&S. Second, the process must be cascadable, that is,
groups of groups must be possible. This is a bit more problematic,
because the number of different synchronized groups at a time is
very limited. For the system proposed here, this is not a serious
problem, because the processors keep their RF properties intact,
so the relevant cells for a whole object may be synchronized into
one group without confusion. For implementing, for example, a
graph structure like the one used by Lades et al. (1993) it might
constitute a serious limitation.

If such object descriptions develop in a self-organized way
based on the input image it should be relatively easy to match
them with stored models of objects, although the integration of
flexible matching and associative memory remains an open prob-
lem. Anyway, the target article opens a couple of interesting new
routes of investigation.

Authors’ Response

Progress toward an understanding
of cortical computation

W. A. Phillipsa and W. Singerb
aCenter for Cognitive and Computational Neuroscience, Department of
Psychology, University of Stirling, FK9-4LA, Scotland, United Kingdom;
wap@forth.stir.ac.uk www-psych.stir.ac.uk/,,,,wap; bMax Planck Institute
for Brain Research, D-60496, Frankfurt/Main, Germany; singer@mpih-
frankfurt.mpg.de

Abstract: The additional data, perspectives, questions, and criti-
cisms contributed by the commentaries strengthen our view that
local cortical processors coordinate their activity with the context
in which it occurs using contextual fields and synchronized popu-
lation codes. We therefore predict that whereas the specialization
of function has been the keynote of this century the coordination
of function will be the keynote of the next.

We thank all of our commentators for producing thoughtful
and insightful commentaries in the few weeks available.
The commentaries come from five broad areas of expertise:
neuroscience and neurology (13); computing, neural com-
puting, and informatics (10); psychology (5); theoretical
brain physics (2); and psychiatry (2). This diversity is a
testament to the importance of trying to understand cortical
computation. Anything common to such diverse sources of
knowledge must reflect a deeper reality. We do not sup-
pose, however, that all these perspectives can be boiled
down to any single perspective, including that emphasized
in the target article. Just as we suppose that cortical cells can
cooperate so as to emphasize coherence while nevertheless
maintaining their own distinctive contribution, so we sup-
pose that different scientific perspectives can all shed light
on a common underlying reality while nevertheless remain-
ing distinct.

We first present a summary of the views taken on four
central issues, and then discuss two of the most basic: the
working hypothesis of common foundations, and the role of
contextual coordination. The main body of the response is
divided into nine sections. R1 to R5 discuss the five issues

Table R1. Views on four basic issues

Are common foundations for cortical computation likely?

YES Amit, Bower, Bugmann, Eckhorn, Floreano, Gregson,
Grossberg, Haase & Diniz, Iacoboni, König et al.,
McCollum, Morasso et al., Niebur & Usher, Palm &
Wennekers, Silverstein & Schenkel, Smyth, Tononi &
Edelman, Treves, Wang, Wright, and Würtz.

NO
? Nunez, Stone.

Is the coordination of activity a fundamental goal?

YES Amit, Bugmann, Eckhorn, Floreano, Gregson,
Grossberg, Haase & Diniz, Iacoboni, König et al.,
McCollum, Morasso et al., Niebur & Usher, Nunez,
Silverstein & Schenkel, Smyth, Stone, Tononi &
Edelman, Wang, Wright, and Würtz.

NO Treves.
? Bower, Palm & Wennekers.

Is the distinction between CFs and RFs useful?

YES Bugmann, Eckhorn, Floreano, Grossberg, Iacoboni,
König et al., McCollum, Morasso et al., Silverstein &
Schenkel, Smyth, Stone, Tononi & Edelman, Wang,
Wright, and Würtz.

NO Niebur & Usher.
? Amit, Bower, Gregson, Haase & Diniz, Nunez, Palm

& Wennekers, and Treves.

Does the cortex use synchronized population codes?

YES Bower, Bugmann, Eckhorn, Floreano, Gregson,
Grossberg, Haase & Diniz, Iacoboni, König et al.,
McCollum, Niebur & Usher, Nunez, Palm & Wen-
nekers, Silverstein & Schenkel, Tononi & Edelman,
Wang, Wright, and Würtz.

NO Amit, Treves.
? Morasso et al., Smyth, and Stone.

listed in sections 6.1 to 6.5, and in the same order. R6
discusses possible additional foundations proposed by com-
mentators. R7 discusses further issues raised by commenta-
tors. R8 takes up the invitation of one of the commentators
to pursue the analogy between the scientific enterprise and
cortical computation. Finally, R9 notes promising direc-
tions for future progress.

Table R1 classifies commentaries in relation to the views
taken on four basic issues: (1) Are common foundations for
cortical computation likely? (2) Is the coordination of
activity a fundamental goal? (3) Is the distinction between
contextual fields (CFs) and receptive fields (RFs) useful?
(4) Does the cortex use synchronized population codes?
Each commentary is classified as “yes,” “no,” or “agnostic”
on each question. Most classifications are based on what is
said explicitly, but in a few cases we inferred what seemed
implied. Nevertheless, the classifications given are ours.
There is no guarantee that commentators would agree.

On each of the four questions Table R1 classifies the
majority of commentators as giving the same answers we
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do. Few argue explicitly against the positions we take on
these issues. They were not short of criticisms, of course,
with the most prominent being as follows. Amit and Treves
doubt any role for synchronization. Bower says that his
biological models suggest a role for it, but a role that differs
from ours. Niebur & Usher agree with us on the role for
synchronization, but doubt CFs. Palmer & Wennekers
think that synchronization is important, but criticize the
computational studies for not modeling activity at the level
of individual spikes. Some commentators see no role for
information theory. There is thus no agreement between
these criticisms, and much disagreement. Several commen-
taries call for more emphasis upon top-down processes.
This is well within the spirit of our approach, and we agree.

All commentaries agree that it is worth searching for
common foundations. This consensus does not show that
view to be correct. There is no reason to suppose that those
whose skeptical views were noted in sections 2.1, 2.2, and
2.3 are no longer skeptical. It is simply that their views are
not represented here. It would help if they were, because
their perspective suggests aspects of cognition that are
unlikely to be directly comprehensible in terms of common
foundations. Our search will be led seriously astray if it
attempts to explain, without additions, aspects that require
further capabilities. With respect to language, at least, the
best supported hypothesis is that it does involve special
capabilities (Pinker 1994). Whether these depend upon the
common foundations, as our perspective suggests, remains
to be seen.

Stone and Nunez both note that the hypothesis of
common foundations is not well specified. We have not
attempted any formal specification, simply using the word
“common” to mean most or many, and not necessarily all.
We do not see how this can be formalized. It is an empirical
rather than a formal issue, so we keep our minds open as to
what constitutes the range of cortical and cognitive pro-
cesses to be understood under a common rubric. The more
the better.

We now turn to views on the role of contextual coordina-
tion. We argued that functional specialization and contex-
tual coordination together form two basic and mutually
constraining principles of cortical organization (sect. 1.1).
Functional specialization is undisputed. The issue is
whether it is balanced against a need for coordination.
Tononi & Edelman have argued elsewhere (Tononi et al.
1996), both formally and forcefully, that this is so, and von
der Malsburg and Singer (1988) have shown how the
emergence of global order from local cooperation is a very
general property of physical systems composed of many
distinct but interacting elements. The forms of contextual
coordination emphasized in the target article include the
selection of contextually relevant signals, their grouping
into coherent subsets, and contextual disambiguation. Al-
though most commentaries seem to agree with the need for
such coordination, two raise important doubts. Treves
argues for the value of dissonance and of letting cells be free
rather than having them goose-stepping in synchrony.
Niebur & Usher argue that as unexpected events can be
both important for survival and highly salient, they consti-
tute cases where our emphasis upon coherence is exactly
the opposite of what is required.

Treves stressed the possibility that information trans-
mission may be reduced rather than increased by syn-
chrony. We will discuss evidence for synchrony as a cortical

code in section R3.1. Here we focus upon conceptions of
the goals of cortical processing. Underlying Treves’s con-
cern for squeezing as much information as possible out of
cortical cells is the long and strong tradition that empha-
sizes the goal of recoding to reduce redundancy (sect.
1.2.1). If the goal is to transmit as much information as
possible using a limited and noiseless channel, an optimal
recoding will map activity into statistically independent
variables. We agree that this perspective makes an impor-
tant contribution to our understanding of cortical computa-
tion, but taken to the extreme it would lead to something
worse than chaos. First, neither the external world nor the
cortex are noiseless, so redundancy is necessary. More
important, the transmission of as much information as
possible seems to be a highly implausible goal for cortex. It
is more plausible that it discovers what predicts what,
including various aspects of reinforcement, and uses that to
transmit information about just those variables that matter.
This will emphasize signals that are coherently related, and
thus reduce total information transmission.

Niebur & Usher note the sudden appearance of a
predator as an example of the salience of “unexpected”
events; they view this as evidence for the opposite of our
emphasis upon coherence. We are well aware of the sa-
lience of abrupt changes. They were central to our studies
of the detection of appearance and disappearance of single
elements in random-dot arrays using psychophysical and
physiological techniques (Phillips & Singer 1974; Singer &
Phillips 1974). Gradients of change in both space and time
are so crucial that they are central to RF specificity at all
levels. This has long been clear, and it explains why contrast
in either time or space (including higher feature spaces) is
so noticeable. Does this imply that incoherent signals are
more salient than coherent signals? Not at all. Consider a
random-dot array in which two subsets of elements appear,
one in some structured or familiar arrangement, the other
at random. It is the structured or familiar subset that will be
most salient, not the random one. The sudden appearance
of a predator will produce activity across a wide array of
cells in the visual cortex. Camouflage evolves so as to
reduce the coherence of that activity, not so as to increase it.
Thus, Niebur & Usher provide an excellent example that
expresses at the intuitive and behavioral level our view that
coherent patterns of activity, not incoherent ones, are most
effective at the cellular level.

R1. Does the distinction between RFs and CFs
have biological relevance?

R1.1. Niebur & Usher’s doubts

Most commentaries agree that this distinction is useful.
Niebur & Usher, however, argue explicitly that it is not.
Their grounds for this are that lateral interactions in the
cortex can be explained by excitatory and inhibitory interac-
tions alone, making no use of gain-control mechanisms.
Smyth discusses the same phenomena as Niebur & Usher,
but, in contrast, concludes that such lateral interactions
support the RF/CF distinction and should be included in
the CFs. Who is right? In section R1.7 we will outline a
scenario in which they could both be partly right. Here we
emphasize two more general points. First, CFs are primar-
ily distinguished by the effects they have, that is, modula-
tory and synchronizing, not by the source from which they
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come. They should not be identified with lateral interac-
tions. Some long-range interactions may be concerned with
computing RF features that require comparison with a
large surround. RF features defined by comparing a center
with a large surround are perfectly compatible with the
contextual coordination of those features through CFs,
however. Second, CFs are primarily distinguished by the
effects they have, not by the mechanism producing those
effects. Furthermore, although Niebur & Usher suggest a
different mechanism for lateral interactions, they acknowl-
edge elsewhere that voltage-dependent channels (e.g.,
NMDA) are common (Usher & Niebur 1996), and may play
a role in “top-down attentional modulation.” Thus, in our
terms, they do assume a role for voltage-dependent CF
mechanisms, suggesting that it is specifically intraregional
voltage-dependent CFs that they doubt. If so, their view
seems similar to that of Grossberg in this respect (sect.
R1.7). The absence of such CFs is not yet clearly estab-
lished. It cannot be established by showing that some long-
range intraregional connections contribute to RFs, nor by
showing that they may in part use mechanisms different
from those we emphasized.

R1.2. How are RFs and CFs distinguished?
Given that this distinction is useful, how should it be
drawn? At least five possible contrasts must be considered:
(1) RFs have a driving effect (driving activity either up
through excitation or down through inhibition); CFs are
modulatory (producing either facilitative or suppressive
gain-control); (2) RFs determine what information signals
transmit; CFs help determine exactly when they are sent;
(3) RFs determine what information signals transmit; CFs
specify with which other signals they are to be grouped. (4)
RFs determine what decision signals transmit whereas CFs
help determine the confidence with which that decision is
made; (5) RFs tend to be feedforward; CFs tend to be
lateral and feedback.

Tononi & Edelman and Eckhorn cite further evidence
that most of those contrasts are relevant. Our view is close
to theirs but with a few differences of emphasis. Tononi &
Edelman doubt the usefulness of distinguishing between
decisions and confidence in those decisions. They rightly
note the difficulty of making a categorical decision by
distinguishing between active and inactive neurons. Our
working assumption is that different outcomes of categori-
cal decisions are represented by different groups of neu-
rons with reciprocal inhibition between groups. The cate-
gorical decision could then be conveyed by the group
transmitting more spikes or more synchronized ones, than
the others, and the confidence by how much more. Tononi
& Edelman put more emphasis on contrast 5 than we do.
We propose that CFs are distinguished by the effects they
have, not by the source from which they come. Neverthe-
less we agree that CFs are more likely to come from lateral
and feedback sources. Eckhorn notes that there is little or
no physiological evidence for suppressive effects between
uncorrelated signals. This is a simple misunderstanding.
The computational framework outlined in section 3 implies
that CF connections will adapt so that they have no effect if
they link streams between which activity is uncorrelated.

R1.3. Terminology for CFs
Given the similarities between our view of CFs and those of
Tononi & Edelman and of Eckhorn, we explain briefly

why we use the terms we do, rather than those they
propose. Calling the CFs reentrant connections puts the
emphasis upon the source from which they come rather
than upon the effects that they have. If it turns out that
some bottom-up connections mediate contextual modula-
tion, for example, to speed-up coordination, we could refer
to them as feedforward CFs. Calling them feedforward
reentrant connections would sound less coherent. Eckhorn
calls the CFs association fields, as do Field et al. (1993).
Although this has some appropriate connotations, it seems
more appropriate to the retrieval of concepts. We therefore
prefer to use the term associative connections to refer to the
internal connections in attractor neural networks, such as
those analyzed in detail by Amit (1989), Hopfield (1982),
and many others.

R1.4. How could CFs produce synchronization?

It is noted by Palm & Wennekers that the computational
theory outlined in section 3 does not show in detail how
biological CFs could produce synchronization. Previous
studies by many others have studied this in detail (sect.
R1.9), however. An excellent example of the use of CFs in
technological implementations is given here by Wang. His
success in processing real images shows that CFs would be
useful if they had biological reality. Further computational
support for synchronizing CFs is provided by Würtz who
notes that their use may overcome the problem of distin-
guishing multiple simultaneously active groups, which is a
difficulty for the dynamic link architecture (DLA) (Lades et
al. 1993). Thus, a system using CFs may be less flexible than
the DLA, but closer to the biology.

R1.5. Is there a role for inter-regional feedback CFs?

There is an explicit call by Tononi & Edelman, König et
al., Grossberg, and Bugmann for more emphasis upon
top-down processes. We agree. Top-down sources for CFs
are clearly shown in Figure 1c. Physiological evidence for
such effects was cited in section 4, and their relevance to
word perception was discussed in section 5.7.2. Neverthe-
less we understand why several commentators were misled
about our views on this, because we did put more emphasis
upon bottom-up stimulus-driven contextual coordination.
This was not because we doubted the importance of top-
down influences. Two classes of top-down effect must be
distinguished, stimulus driven and strategically driven.
There is clear physiological evidence for top-down contex-
tual modulation that is stimulus driven (Zipser et al. 1996),
and our computational studies have included such effects
(e.g., Phillips et al. 1995a; 1995b). König et al. now provide
evidence for strategic top-down coordination by showing
that synchronization depends upon the current task and not
just upon the current stimulus. We agree that such effects
are important and could be mediated by CFs.

R1.6. Is there a role for internal sources of RF drive?

The flow of activity that arises from within the cortex itself is
emphasized by Tononi & Edelman, and Wright suggests
that intrinsic attractor dynamics be incorporated into the
concept of a local-processor, and in such a way as to be seen
as part of the RF. We see our approach as supporting both
proposals. They rightly remind us that internal systems, for
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example those concerned with plans and strategies, can
provide a source of driving as well as of coordinating
activity. Coordination of this internally generated activity is
also crucial, however, because our thoughts and plans also
need to be coherent (sect. R7.4).

R1.7. How are CFs related to long-range interactions
in visual cortex?

The distinction between RFs and CFs is unnecessary,
Niebur & Usher argue, because the effects of context can
be explained without invoking a separation between the
processing of context and content. It is not clear whether
they are denying the functional distinction or proposing a
different mechanism for it, however. Having denied the
distinction, they then use it so that the sign of the effect of
“context” depends upon the strength of the “input” (i.e., the
RF input). If there were no difference between the pro-
cessing of context and content then the sign of the effect of
RF input should depend upon the strength of the context,
and they do not claim that to be the case. It thus seems more
likely that they are proposing a mechanism for the distinct
effects of context. This interpretation is strengthened by
their description of the physiological and psychophysical
data to be explained as showing contextual modulation
(Stemmler et al. 1995). The mechanism they propose is
based upon the phenomenon of “stochastic resonance,” in
which noise enhances detection of weak signals by increas-
ing the gain at weak signal strengths (Stemmler et al. 1995).
Bezrukov & Vodyanov (1997) have now proved that
stochastic resonance can occur in voltage-dependent ion
channels, however, so the mechanism that Niebur & Usher
propose may be more compatible than they thought with
the one we emphasized. If so, that would enable them to
preserve their account of the relevance of stochastic reso-
nance without having to explain away evidence that
long-range intra-regional connections activate voltage-
dependent channels (Hirsch & Gilbert 1991). Even that is
unlikely to provide a complete account of long-range lateral
interactions, however, because it is hard to see how enhanc-
ing the detectability of weak elements explains the figural
grouping of high-contrast elements (e.g., as in Field et al.
1993).

Smyth, in clear contrast to Niebur & Usher, interprets
the data on long-range interactions in V1 as evidence for
CFs. Kastner et al. (1997) provide evidence for modulatory
effects upon cells in visual cortex (V1). Their Figure 4a
shows a cell with narrow orientation tuning. It is inhibited
by a single central bar orthogonal to its preferred orienta-
tion. There is no sign of inhibition being produced by a
surrounding array of parallel elements alone, but when they
are presented along with an optimally oriented central bar
they reduce firing rate from about 20 to about 5 spikes per
sec above spontaneous. This is clear evidence for modula-
tory rather than driving effects, and Kastner et al. describe
their findings in terms of effects upon “salience.” This
implies that they view the effects of the surround as not
changing what is signaled, but as changing how effective
that signal is at subsequent levels. This is in accord with
what Smyth proposes.

The view just outlined allows for the dependence of
context effects on the strength of the central stimulus. The
hypothetical activation function used in section 3.1 of the
target article produces smaller effects of context as target

strength increases, and in addition sect. 6.1 suggests that
effects of context upon spike rate in cortex may reduce as
target strength increases. Studies of context using visual
evoked potentials show this to be so (Polat & Norcia 1996).
Thus this aspect of “contrast-dependence” is catered for by
the simple assumptions made in section 3, contrary to what
Smyth may be taken as implying. The aspect that he
intends to emphasize, however, is the change in sign of the
context effects with changes in the strength of the central
RF stimulus (personal communication with Smyth). We
agree that this is not catered for in section 3.

For a broader view of long-range interactions it is crucial
to distinguish several levels of processing. Two levels of
analysis can be distinguished in the perception of textured
stimuli such as those used in many of these experiments
(Sagi 1995). At the lower level local features are computed,
for example by anisotropic Gabor-like filters. At the higher
level, further center-surround comparisons are used to
compute gradients of change in the lower-level feature
space (e.g., by isotropic Gabor-like filters with larger RFs
than at the lower level). The model outlined by Sagi (1995)
is concerned only with the basic feedforward RF architec-
ture, so we need to add contextual coordination within
levels and from the higher to the lower level. Detectors of
distinct stimulus elements could therefore interact through
modulatory CF effects at the lower level, but with their
outputs being combined in RF computations at the higher
level. At the higher level of analysis, however, long-range
comparisons are used to compute gradients in feature
space, and these are best thought of as being part of RF
computation because information about the separate stim-
ulus elements is lost (Sagi 1995). This is in keeping with the
view expressed in section 1.3, except that it occurs in
secondary rather than primary visual cortex.

This scenario may provide a reply to the second question
that Smyth raises, that is, it shows how synchronization can
have a role in input pre-processing. It allows for the
dynamic sculpting of the exact extents of the effective RF
centres and surrounds of cells in secondary visual cortex.
These would otherwise be too rigid to reconcile, for exam-
ple, the conflicting demands of segregation and integration
(Braddick 1993). There is evidence that this involves top-
down modulatory inputs (Salin & Bullier 1995), including
those that are stimulus-driven (Zipser et al. 1996), as well as
those that are task-dependent (Maunsell 1995). Zipser et al.
(1996) found evidence for top-down contextual influences
on V1 cells by showing that firing rate is increased by any of
a variety of higher-level cues that made the features being
signaled part of the figure rather than the ground. Synchro-
nization of firing was not studied. Given the evidence for
diffuse axonal bifurcation of the feedback connections
(Salin & Bullier 1995), and given that pyramidal cells
respond to synchronization over the relevant timescales
(König et al. 1996), we predict that the outputs of V1 cells
sensitive to different elements within the figure will tend to
become more synchronized by the common top-down
inputs that they receive.

An important difference between Grossberg’s perspec-
tive and the one we outlined is that in his models top-down
and lateral connections have very different roles, with only
the top-down being analogous to our CFs. He states his
conviction that the function of horizontal intraregional
connections is to complete missing information, as over
blind spots and retinal veins, but cites no evidence that
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convinces us of this. It is hard to see how it could be the
main part of the story, because lateral intraregional connec-
tions in V1 predominantly link cells with normal retinal
input.

R1.8. What is the distribution of CF inputs?

Given the usefulness of distinguishing CFs from RFs,
Eckhorn and Morasso et al. note that a major issue that
arises is to map the distribution of facilitatory and suppres-
sive CF inputs. We agree. Much relevant data concerning
their distribution in V1 already exists (e.g., Kastner et al.
1997; Levitt & Lund 1996; Polat & Norcia 1996; Schmidt et
al. 1997; Weliky et al. 1995; Zipser et al. 1996), but even
there important issues await further clarification. In other
regions there is much new territory to be explored, as
Morasso et al. emphasize.

CFs are local in that each processor has its own particular
set of direct CF inputs. All-to-all CF connectivity is neither
possible nor desirable (Wang). If CF influences can be
mediated through other processors, however, then each
processor could be influenced indirectly by a much larger
set. Floreano’s simulation of mediated long-range contex-
tual influences clearly demonstrates this possibility. He
shows how activity in distant parts of the network can
influence RF learning given a chain of intermediate CF
connections. An important constraint on this possibility,
however, is that the mediating processors in the chain must
themselves simultaneously receive RF input. This is in
striking agreement with the capabilities and constraints
observed by Polat and Sagi (1994b) in their psychophysical
studies of perceptual learning in human vision.

R1.9. What synaptic receptor channels do CFs use?

Doubts are expressed by Niebur & Usher about whether
NMDA-receptor channels can mediate synchrony at short-
time scales. NMDA channels have long been thought to
have time constants of more than 150 msec, but it is now
known that there are also fast components to the NMDA
response with time constants closer to 15–50 msec (D’An-
gelo et al. 1990; Hestrin et al. 1990; Monyer et al. 1994).
Although the fast components of the NMDA response are
not well known, they have been used in models of STM
(Jensen et al. 1996; Lisman & Idiart 1995). None of this
implies that there are no other mechanisms for synchroni-
zation, and there is evidence for others (e.g., Cobb et al.
1995; Traub et al. 1996).1

R2. Does the distinction between RFs
and CFs (and/or synchronization)
have psychological relevance?

In section 5 we argued that cognitive and neuropsychologi-
cal evidence from a wide variety of paradigms supports our
approach. Few of those arguments were questioned. Over-
all, commentaries did not subtract much from the psycho-
logical case presented, but, with one notable exception,
neither did they add much. This suggests that a great deal
remains to be done to foster facilitatory interactions be-
tween psychological and neurobiological studies of contex-
tual coordination. The encouraging exception is provided
by Silverstein & Schenkel. They have long used a variety
of cognitive psychological paradigms to study perceptual

grouping and other forms of contextual coordination in
schizophrenia and conclude that it is selectively impaired in
a distinct subset of patients. If so, studies of such states
could provide new insights into the broader psychological
significance of contextual coordination and of its phar-
macological bases. Their suggestion will be considered
closely in section R7.4.

R2.1. What is the role of top-down contextual control
in cognition?

Internal sources of RF drive are dominant over external
sources, Tononi & Edelman argue. This contrasts with the
greater emphasis in the target article upon stimulus-driven
effects. We agree that this is a major issue, and that the
contextual modulation provided by strategic control may
have much import for psychology. Perhaps the balance
between internal and external sources varies, with the
balance shifting too far toward external sources in some
cases (e.g., attention deficit hyperactivity disorder, frontal
lobe damage), and too far toward internal sources in others
(e.g., psychotic delusions, dream states). They also argue
for the importance of global context as provided by diffuse
ascending systems. We agree, but emphasize that they do
not carry semantic information and differ anatomically,
pharmacologically, and functionally from mechanisms for
local contextual coordination.

König et al. also emphasize the importance of internal
strategic control variables, and show that they are amenable
to combined electrophysiological and behavioral study.
Their results indicate that such control uses similar CF
synchronizing mechanisms as do stimulus-driven effects,
and thus suggest promising new directions for future re-
search. Section 1.4 in the target article notes several prior
theories with similarities to our approach, including that of
Grossberg. We did not specifically relate his work to these
issues, however, and he has now done that better than we
could have done. Instead, we put more emphasis upon
relations to other theories that are closer to ours in spirit,
and to the neurobiology in detail. Nevertheless, it is encour-
aging that Grossberg also sees important roles for synchro-
nization and contextual modulation, for example in the top-
down matching process of ART. Bugmann also makes a
good case for top-down task-dependent contextual effects.
We agree, but note that this does not imply the absence of
bottom-up stimulus-dependent contextual effects. We
await with interest for further developments in the use of
CFs in computational models of strategic control.

R2.2. Are there modulatory interactions
in word perception?

The relevance of contextual modulation to word perception
is called into question by Niebur & Usher on the grounds
that the effects of context and target are independent until
additively combined at the final stage of response selection
(Massaro 1989a; sect. R7.1.1). There are four replies to
these doubts. First, Movellan and McClelland (1995) show
how the data suggesting independence is compatible with
interactions between streams even in the case where those
interactions are mediated by driving excitatory and inhibi-
tory connections. Second, even Massaro acknowledges an
asymmetry in the effects of context and target, because it is
only the target that determines the alternatives between
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which choice is made. Third, Samuel (1996) shows that
there are conditions where the signal detection measures
used as evidence for independence do show effects of
context upon signal detectability, even though these effects
are small and fragile. Fourth, and most importantly, mea-
sures of signal detection are not equivalent to measures of
information transmission. Changes in bias can have large
effects on information transmission, so other measures are
needed to test for the interactions that we propose. The
appropriate conditional mutual information measures are
presented in Smyth et al. (1996). We do not know of any
studies applying these measures to context effects in word
perception, but possible paradigms for doing so were out-
lined in section 5.7.2.

Iacoboni summarizes data showing that interhemi-
spheric priming effects are mediated by the corpus cal-
losum, as most theories would predict. This could reflect
interhemispheric contextual modulation, but more direct
evidence is required. In particular, measures that distin-
guish modulatory from driving effects (e.g., Smyth et al.
1996) would have to be used in order to show that the
interhemispheric priming is indeed modulatory. Until then,
a prima facie case for the hypothesis can be made on the
grounds that response selection is determined by the target,
with cross-hemispheric context predominantly influencing
the RT.

R.3. Does the cortex use synchronized
population codes?

R3.1. The doubts of Amit and Treves

Both Treves and Amit doubt that synchronization is used.
This question can only be resolved experimentally. Spu-
rious synchronization in Amit’s models in no way detracts
from the many observations of stimulus-dependent syn-
chronization in real animals. Treves’s use of information
measures may well help analyze this data, but it is not just
the transmission of information in general that must be
measured, but information about the particular stimulus
relations that affect synchronization. Stimulation para-
digms have to be used that require response selection and
grouping, and evidence has to be obtained that the result of
these operations is signaled by changes in synchronization
rather than by changes in discharge rate. Such evidence is
available. Whether neurons with spatially segregated RFs
are activated with a single continuous contour or with two
different stimuli is reflected by the degree of synchroniza-
tion rather than by rate changes in the cat retina and LGN
(Neuenschwander et al. 1996), cat area 17 (Engel et al.
1991; Freiwald et al. 1995; Gray et al. 1989), for groups of
neurons distributed across area 17 of the two hemispheres
(Engel et al. 1991; Munk et al. 1996), or across areas 17 and
PMLS (Engel et al. 1991), in area MT of awake monkeys
(Kreiter & Singer 1996), and in primary auditory cortex
(deCharms & Merzenich 1996). In amblyopia, a develop-
mental disorder associated with deficits in contextual
grouping, the only detectable abnormality in primary visual
cortex was drastically reduced synchronization among re-
sponses conveyed by the amblyopic eye. There were no
differences in discharge rates between neurons driven by
the normal or the amblyopic eye even when these responses
were evoked by gratings whose spatial frequency was so
high that they could no longer be resolved by the cats when

viewing with the amblyopic eye alone (Roelfsema et al.
1994a; 1994b). Finally, dynamic selection of responses,
such as occurs during binocular rivalry, is associated with
changes in synchrony but not discharge rate in area 17 of
awake cats experiencing rivalry. Upon introduction of a
rivalrous stimulus, neurons responding to the eye which
won the competition increased their synchrony while neu-
rons responding to the losing eye did the reverse (Fries et
al. 1996).

R3.2. Should external (stimulus-locked) and internal
synchronization be distinguished?

Stimulus-locked and internal synchronization are distin-
guished by Tononi & Edelman, Eckhorn, and Wright.
We agree. In both cases synchronization is exploited for
binding. Psychophysical evidence suggests that stimulus-
locked synchronization is used for figure–ground segmen-
tation if figure elements are presented with temporal offset
relative to background elements. The temporal precision of
this segmentation is better than 8 msec and the temporal
information is provided by the magnocellular pathway
(Leonards et al. 1996; Leonards & Singer 1997; but see
Kiper et al. 1996 for a different result). This grouping by
external timing can be overridden by internal grouping,
however. If the figure is defined by textual coherence of its
elements, detection is not impeded by false temporal con-
junctions. If two different figures are defined, one by
temporal cues and the other by texture cues, there is rivalry
and the figure defined by the more salient cues is per-
ceived.

R3.3. What are the time-scales of synchronization?

Questions concerning the relevant time scales of synchro-
nization are raised by Palm & Wennekers and Nunez.
One of the main advantages of synchronization is that it can
operate on a much faster time scale than selecting re-
sponses by increasing their rate – provided that it is possible
to synchronize responses rapidly. If responses are selected
by rate increases, a cell has to integrate over a sufficiently
large number of incoming EPSPs before emitting a re-
sponse in order to assume that the response is actually
generated by the selected input and not by accidentally
arriving EPSPs or nonselected inputs. The required dura-
tion of this safety interval depends on average firing level
and can be set by modulating the membrane potential (i.e.,
the distance to threshold and the membrane time con-
stants). Assuming response frequencies of cortical neurons
in the range of 50 Hz and postulating summation over at
least 4–5 EPSPs before reacing a decision amounts to
transmission times per processing step of at least 80 to 100
msec. This is far too slow. Input selection by spike synchro-
nization is much faster because it does not rely on temporal
summation. Coincident EPSPs can reach firing level within
a few msec, thus reducing transmission times to near the
synaptic delay. The speed of selection is thus primarily
constrained by the time required to obtain synchrony.
Contrary to earlier models, which generated synchrony by
coupling harmonic oscillators, more recent models based
on spiking neurons (i.e., relaxation “oscillators”) indicate
that synchrony can be obtained very rapidly (Wang;
Somers & Kopell 1993). This is supported by experimental
evidence. In the retina, responses to coherent stimuli are
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synchronized within milliseconds after their onset (Neu-
enschwander et al. 1996).

In the cortex, it is much more difficult to determine
experimentally the time required for the alignment of
spikes by cross-correlation analysis because the windows
must have a minimal duration to obtain sufficient entries,
and because response onset is not well defined when
moving stimuli are used. The data suggest that newly
induced oscillatory responses synchronize right away once
oscillatory patterning develops (Singer & Gray 1995). As
cortical activity has a complex oscillatory structure (Arieli et
al. 1996) and as oscillatory modulation of the membrane
potential shifts spike timing, feature specific synchroniza-
tion may occur very rapidly. The rate at which different
assemblies can be organized successively without merging
depends critically on the integration time constants of
cortical neurons. Here views diverge, ranging from esti-
mate of less than a millisecond (König et al. 1995; Softky
1995) to tens of milliseconds (Shadlen & Newsome 1994).
Data on echo location and spatial location of sound sources
show that neurons are capable of very precise conicidence
detection (Yan & Suga 1996). Whether this is also true in
the cortex remains to be seen, but recent evidence on action
potentials backpropagating into dendrites (Stuart & Sak-
mann 1994) and other regenerative events in dendrites
(Connors & Gutnick 1990) may lead to a drastic change in
views on the timescale of dendritic integration.

R3.4. What is the role of oscillation?

Questions are raised by McCollum, and Haase & Diniz
concerning the relation between oscillation and synchro-
nization. Experimental observations indicate a close rela-
tion between oscillation and the precision of synchrony
(König et al. 1995). Also, there is evidence that cortical
neurons engage in synchronous oscillations in the beta
and gamma frequency range across visual, association,
somatosensory, and motor areas when the animal focuses its
attention in the preparation of a visuomotor reaction; this
synchronization increases in a task-specific way during
execution of the task but collapses upon completion
(Roelfsema et al. 1997). This suggests that oscillatory mod-
ulation helps synchronize responses, facilitating handshak-
ing among neurons that need to be bound together for the
execution of the task. Whether this frame-setting oscillatory
modulation of membrane potential is due to oscillatory
input from inhibitory or excitatory sources is not crucial for
the principle and requires experimental testing.

Oscillatory patterning may be advantageous for rapid
synchronization of discharges because it allows for tempo-
ral shifting of responses to synaptic input in both directions.
The duration of the possible shift intervals is determined by
oscillation frequency, and in the range of about a half-cycle.
An assembly defined by synchronized discharges need not
necessarily extend over many oscillation cycles. In some
cases it may be sufficient to organize a single volley of
synchronized discharges and have a new assembly at the
next processing stage as proposed by Abeles (1991). In that
case different assemblies can be organized on successive
cycles. However, oscillatory patterning can also serve to
generate the same synchronous volleys over several cycles,
thereby refreshing assemblies that need to be stabilized for
a while. The advantage over stabilizing assemblies by
simple rate increases would be that it reduces the possibility

of getting false conjunctions if several assemblies need to be
maintained within the same array of neurons, as false
bindings are avoided if unrelated assemblies do not fire in
synchrony. This does not require fixed phase shifts, as it can
be achieved by interactions that modulate the regularity of
the respective oscillations.

R4. What forms of learning occur within
the cortex?

R4.1. Can the abstract learning rules discover
higher-order variables?

There is a recognition by Stone of the potential of using
context to guide learning to variables that are statistically
related to variables of significance to the organism, includ-
ing, but not limited to, reinforcement. We agree that this
can include temporal as well as spatial structure. The
algorithms that use temporal constraints to discover statisti-
cal structure (e.g., Becker 1996; de Sa & Ballard 1997;
Stone 1996a; 1996b) are sufficiently similar to those out-
lined in section 3 that ways in which the two constraints can
be used together merit further study.

Floreano shows that the learning rules outlined in
section 3.3 can discover nonlinear transforms. The example
used is stereo depth. He studies the possibility that this is
guided by contextual input from other cues to depth. As
there are usually multiple cues it may be that those that are
either genetically specified or more easily learned guide the
discovery of others. Floreano assumes that different depth
cues are processed in different streams, and this is also
plausible because different cues are not always in agree-
ment (e.g., depth of a picture plane versus depth in the
picture). The success of Floreano’s simulation in sometimes
discovering stereo depth using such an internal teacher is
therefore encouraging. It did not do so reliably, however,
and although his suggestion as to why that was so may be
part of the story, the capabilities and limitations of this
whole class of learning algorithms remain unclear.

R4.2. Does unsupervised learning in the cortex
discover higher-order variables?

In section 6.4 we asked whether there is any evidence that
self-organization in the cortex can discover nonlinear vari-
ables such as XOR. No such evidence was offered in the
commentaries, nor have we yet found any from other
sources. The continued failure of such evidence to appear
suggests that reliable discovery of such nonlinear variables
may not be a fundamental capability of cortex.

R4.3. Is there a floating threshold for LTP,
and if so what are its determinants?

Sections 3.3 and 6.4 note converging evidence for learning
rules of the BCM/ABS type (Artola & Singer 1993; Bi-
enenstock et al. 1982; Hancock et al. 1991a). A central
feature of these learning rules is a non-monotonic depen-
dence of synaptic change upon post-synaptic activity with a
threshold (that may be movable) below which synapses are
weakened (LTD) and above which they are strengthened
(LTP). Grossberg notes that some of his learning rules
have a similar form, and Stone also notes their importance.
A major goal for the neurobiology of learning is therefore to
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find out whether the threshold for LTP does move and if so
what it depends upon.2

R4.4. Does SMA modulate sensorimotor learning
in PMdc?

Neuroimaging evidence is outlined by Iacoboni showing
that activity in the supplementary motor area (SMA) pro-
vides a contextual input that guides the learning of a
sensorimotor mapping from the rostral sector of dorsal
premotor cortex (PMdr) to the caudal sector of dorsal
premotor cortex (PMdc). We agree that this may be so but
other explanations of the results are possible. One way
forward may be to show that activity in both PMdr and
PMdc is necessary for learning, but that activity in SMA is
not, even though it has a guiding effect when present.
Experiments of this sort are now under way (Iacoboni,
personal communication).

R5. To what extent do these processes provide
a representation of the external world?

One of our central suggestions is that local processors could
lay foundations for representation and meaning by discov-
ering commonalities across diverse data sets. This is be-
cause CFs provide a means whereby local processors can
select the relevant information. Morasso et al., Stone,
Tononi & Edelman, and Wright all supported this sug-
gestion and no one argued against it. Amit, Eckhorn, and
McCollum all overlooked this suggestion, however, calling
for a notion of relevance as though we had not addressed
the issue. We must thus reiterate our suggestion, which is
essentially a simple one. If local processors receive only RF
input then we can see no way in which they could distin-
guish the relevant from the irrelevant. If they also receive
CF input, then they can do so by, for example, selectively
transmitting only the RF information that is statistically
related to the context. Thus, in clear contrast to what
McCollum assumes, this does involve information loss, and
crucially so.

In section 6.5 we asked whether the processors we
propose could help form proper intentional representations
of the external world. We suggested that while they might
contribute they could not be sufficient. We have so far not
been very precise as to what “external input” means. In
relation to the simulations it simply means external to the
network being simulated. For most local processors in the
cortex this is analogous to input from another cortical sub-
system, and not to input from a world external to the system
as a whole. To make this distinction the system must have
some notion of “itself.” Wright’s insightful suggestion that
the ability to discover coherence in multiple sources of
activity could apply to sources from within the organism
may be relevant here, but philosophical clarification of the
issues involved would also be helpful.

R6. Additional computational foundations
suggested by commentators

We proposed functional specialization and contextual coor-
dination as two fundamental and mutually constraining
foundations of cortical computation, expecting thereby to

provoke proposals of additional or alternative foundations.
Few others were forthcoming. Grossberg refers us to his
neural network models. Tononi & Edelman suggest a
perspective from which the predominant information flow
is between sources internal to the cortex, with the main role
of external input being to modulate that flow. We agree that
the distinction between internal and external sources is
important, and that the balance between them is a topic of
fundamental importance (sect. R2.1). It is clear that at the
level of local circuits Tononi & Edelman emphasize just the
same two fundamental principles as we do.

In keeping with an emphasis upon internal sources,
Wright notes that local processors may be organized so that
they are autonomously active and with an intrinsic dynamic.
In this case they cannot be adequately described only in
terms of a transfer function. We agree that in this case such
sources should be seen as being included within the total set
of primary RF inputs, and that developments of the kind he
suggests are well worthwhile. Haase & Diniz and Stone
note that structure in time is as important as structure in
space, so an ability to process temporal sequence is also
crucial. This seems compatible with our emphasis upon
both coherence and synchrony. Indeed, as Haase & Diniz
note, precision in temporal sequencing may be well served
by the use of synchronized population codes (Abeles 1991).
Overall, functional specialization and contextual coordina-
tion still appear most prominent as fundamental principles
of cortical computation.

R7. Further issues raised by commentators

R7.1. What mathematical formalisms are useful?

We take it for granted that if there are common foundations
then it must be possible to describe them in abstract terms
that are independent of any specific content.

R7.1.1. Is information theory useful? We can ask, echoing
Amit’s questions concerning synchronization “Is informa-
tion theory necessary to an understanding of cortical func-
tion?” and “Is it sufficient?” To both we answer with an
unequivocal “No.” McCollum identified our methods with
information theory and neural network simulations. Given
our backgrounds in experimental psychology and neuro-
physiology, and the allocation of only 20% of the target
article to computational studies we do not see that as being
accurate. Nevertheless, it is justified to ask “Is information
theory useful to an understanding of cortical function?” and
“Are other formalisms useful?” To both we answer with an
unequivocal “Yes.” Of the commentators, Stone, Tononi &
Edelman, Treves, and Wright also find information the-
ory useful, but Gregson, Eckhorn, Nunez, and Mc-
Collum do not. These differences may be due to a misun-
derstanding of the uses proposed for information theory, so
we will try again to make them clear.

Three uses are exemplified in the target article and
commentaries. First, there is its use for job specification,
that is, to provide a conception of the essential information
processing operations performed by local cortical circuits.
In clear contrast to Grossberg’s perception of the target
article, its central concern is with general principles. In
using information theory to formulate a conception of the
goals of cortical computation we are in a long (e.g., Attneave
1954; Barlow 1959) and still strong (e.g., Intrator & Cooper
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1995a; Olshausen & Field 1996) tradition. The goals of
information compression, data reduction, and sparsifica-
tion are relevant to the concerns rightly raised by Gregson
and by Eckhorn in relation to metabolic constraints. In
accord with the work of Stone and of Tononi & Edelman,
a central aim of the target article is to extend these concep-
tions to include the challenging task of information selec-
tion (sects. 1.2.1, R5).

Second, and also in accord with the work of Stone, we
have used the information theoretic job specification to
derive a learning algorithm that changes connection
strengths to better approximate the goal, given the statisti-
cal structure within the input received. Our description of
the goal as maximizing the objective function specified
(sect. 3.2) may mislead some commentators, for example,
Amit. There is no reason to suppose that in any realistic
situation perfect optimization is either necessary or pos-
sible. All that is required for the learning to be useful is that
it more closely approximates the system to such a state.
Although it may not be necessary to use information theory
to understand learning, should synaptic plasticity be found
to have a dynamic threshold for LTP that moves as specified
by one of the abstractly derived learning rules (sect. R4.3),
then many will wish to understand better how that rule was
derived.

Third, information theory can be used for data analysis,
for example, to measure information transmitted, as em-
phasized by Treves. We agree that such measures are
useful (sect. R3.1). In addition, we use information theory
to tackle a problem that no commentator discussed, that is,
to provide an adequate specification of what should count
as “context.” There was agreement that context is impor-
tant, but this means little unless we can give an adequate
account of what can count as context.

Consider a psychophysical experiment in which there are
two cues to texture segregation and that both influence
performance, although subjects are asked to base their
judgments on just one of them. We could call the specified
cue the target, and the other the “context,” thereby hoping
to provide evidence for the relevance of context. Though
common, this conception of context is wholly inadequate.
On that conception “target” and “context” are distinguished
simply by what experimenter and subject call them. It may
be that both cues contribute in essentially the same way to
the observed responses, so that dividing them into target
and context is arbitrary.

This is exactly what is implied by Massaro’s (1989a) fuzzy
logic model of perception. Perceptual channels are inde-
pendent until they all contribute in essentially the same way
to response decision. In such a system there is no need to
distinguish target from context. Either an input variable
contributes to response or it does not. The same can also
apply to the cellular level; either an input effects output or it
does not. If it does, it is part of the cell’s RF, and if not, it
isn’t. From this viewpoint there is no need to distinguish RF
influences from CF influences (Gilbert, personal commu-
nication). Thus, in contrast to what Amit assumes, the case
for “context” does have to be made. Our use of information
theory to specify what can count as context is developed
further in Smyth et al. (1996), and is being used at Stirling to
analyze the interaction of cues to texture segregation by
human subjects (thus addressing Gregson’s doubts about
the empirical validity of the transfer function used in the

computational theory). We hope to put the study of contex-
tual coordination on a sounder basis than is provided either
by showing that variables other than those that the experi-
menter calls the target can affect subjects’ responses, or by
showing that cellular activity is affected by more than what
the experimenter calls the classical receptive field.

R7.1.2. What other formalisms are useful? We do not
expect to squeeze all of cortical function into a single
mathematical formalism. We agree with Gregson, Nunez,
McCollum, and Morasso et al. that others are needed,
and non-linear dynamic systems analysis in particular. They
complement rather than supplant the uses just listed for
information theory, however. The challenge for such for-
malisms is to give rise to revealing experimental paradigms
and to make their findings more comprehensible than they
would otherwise have been. Having tried to do that for what
are perhaps some of the more basic and intrinsically com-
prehensible aspects of cortical function, we know how big a
challenge that is.

R7.2. What is the role of modeling?

None of the uses listed in section R7.1.1 for information
theory can be described as “modeling.” Simulations are
outlined in section 3.4 but they are not models of biological
systems. As Bower indicates, they are “proof of concept”
simulations, being designed to explore the abstract goals,
transfer functions, and learning rules. Würtz also under-
stood this, and thought our focus on simple computational
concepts a distinct advantage. Nevertheless, Palm & Wen-
nekers’s attempt to interpret the simulations as models of
spiking neurons, and then criticize them for not being so.
Their attempt to interpret the simple demonstration whose
results are shown in Figure 10 of the target article shows
that they misunderstood it in several ways.3 Palm & Wen-
nekers ask questions that are not pertinent to any of the uses
made of the computational theory, but they could be asked
of a biological model, or more pertinently still of the
biological system itself (sect. R3.3).

Bower continues to argue for the relevance of detailed
biological models. We agree that they are useful, but their
limitations as a primary focus for research are well revealed
by Bower’s commentary. Necessary responses to the ques-
tion posed in his title are “What details?” and “To what is
their relevance being assessed?” If they matter, they are not
details. If we were trying to discover how birds stay up in
the air it would be counterproductive to try to include all
details of bird structure and physiology. The “details” that
matter are those essential to aerodynamic lift. Bower im-
plies that the details that matter in the case of cortical
computation are those in his models. Grossberg also
describes his models as being biologically realistic, but they
are not the same as Bower’s and are used to support
different conclusions. The most convincing way to test the
relevance of a theory to biology is to test it on real organ-
isms, not on models that try to replicate them. We therefore
direct our efforts towards seeking a conceptual understand-
ing of cortical computation that can be tested and devel-
oped through investigations of real brains and real people,
as exemplified here by König et al. and by Silverstein &
Schenkel. As the role of computational theory is still so
widely and deeply misunderstood Table R2 compares it
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Table R2. Relations between theory and biology

Bird flight Cortical computation

Goal1 Stay up Coordinate activity2

Strategy Use aerodynamic lift Use contextual
information

Formalization Aerodynamic equa-
tions for lift, drag,
moment, etc.

Transfer functions
and information
theoretic objective
functions, etc.

Mechanism Wings3 Contextual fields3

Testing the
strategy

Wings in wind
tunnels4,5

Neural net “simula-
tions”4,5

Biological
testing

Do bird’s wings have
the required
aerofoil section?

Is air velocity
adequate?

Do cortical cells re-
ceive contextual
input?

Does it affect output
as required?

1. Only one goal is considered in each case. Both bird flight and
cortical computation have other goals but separate goals are best
considered separately.
2. The goals of cortical computation are far less obvious than those
of flight. Discovering what they are is part of the problem we have
to solve.
3. Wings and CFs are neither necessary nor sufficient for their
goals.
4. The theories are best tested using versions of the mechanism
that are as simple as possible yet consistent with achieving the goal
in accordance with the theory.
5. The mechanisms tested are real. The wing in the wind tunnel
generates lift. The “simulated” net computes. Thinking of them as
models of something else does not contribute anything to their
role in testing the strategy.

with the role of aerodynamics in the study of flight, in the
hope that that will clarify our views on this issue.

R7.3. What is the role of CFs and/or synchronization
in motor control?

The possible relevance of CFs and synchronization to
motor control is discussed by Iacoboni, McCollum, and
Morasso et al. The selection of particular motor responses
raises combinatorial problems similar to those raised by
scene segmentation. The number of different constella-
tions of muscle contractions needed for the execution of
different movements is very large. As the same muscles are
used in different combinations for different movements,
the commands for their contraction have to be bound in
ever different constellations. Representing every possible
movement by a command unit that distributes its output to
the appropriate constellation of motor neurons leads to the
same combinatorial explosion as representing every distin-
guishable object by a pontifical cell. The analogy with scene
segmentation and object representation is obvious if one
equates motor units with elementary features and a motor
program with an object. This predicts that one should
observe oscillations and synchronization during the initial
selection phases of motor programming and a sequence of
successively structured synchronized assemblies of the type
ABCD etc. during execution. The findings of Murthy and
Fetz (1996) are compatible with such a view.

R7.4. Is contextual coordination deficient
in schizophrenia?

Contextual coordination, Silverstein & Schenkel suggest,
may be impaired in particular schizophrenic states. Prima
facie, this has an intuitive appeal. If there are specialized
mechanisms for contextual coordination, fragmentation
will result from their impairment. If these mechanisms are
widely distributed across cortex, disorganized perceptions,
thoughts, and actions are all possible consequences. Many
studies of cognition in schizophrenia can be seen as evi-
dence for such disorganization. Silverstein & Schenkel’s
suggestion is further strengthened by evidence for under-
activity of NMDA-receptor channels in schizophrenic
states (Olney & Farber 1995) and for the psychotomimetic
effects of ketamine (Krystal et al. 1994), which blocks
NMDA-channels. This is in keeping with our hypothesis
that contextual coordination is achieved via CFs that exert
gain control, for example, via NMDA-channels. It thus
becomes of paramount importance to understand the basic
pharmacology of coordinating gain-control channels, be-
cause that may advance our understanding of schizophrenia
in a way that directly links molecular mechanisms with their
cognitive consequences.

Attempts to understand schizophrenia have been
plagued by finding a task on which patients are impaired,
and then building a grand explanatory model on that
(Ronan O’Carroll, personal communication). A particular
problem that arises here is that the “contextual coordina-
tion” that is impaired in schizophrenia may have little or
nothing to do with the “contextual coordination” for which
the target article presents evidence. We therefore first
consider studies of perceptual grouping in schizophrenia,
then note unresolved issues that arise.

Silverstein et al. (1996a) review many studies of percep-
tual grouping in schizophrenia beginning with those of Cox
and Leventhal (1978) and Place and Gilmore (1980), and
present further evidence using the Banks and Prinzmetal
(1976) paradigm to study the effect of visual grouping on
visual search. All these studies suggest that in severe schizo-
phrenic states perception is more fragmented than normal,
with reduced effects of processes that group the stimulus
elements into larger units. The evidence suggests that both
stimulus-induced and top-down attentional processes may
be involved in this impairment. The impairment is indica-
tive of schizophrenia (Knight 1992; Silverstein et al. 1992),
and correlates with the severity of other psychotic symp-
toms (Silverstein et al. 1996c). Using Navon’s (1977) termi-
nology, these patients have a tendency to see the trees
before the forest, whereas control subjects have a tendency
to see the forest before the trees. The evidence cannot be
dismissed as being due to a general impairment of perfor-
mance for at least two reasons: (1) The altered processes
involve a reversal in the relative difficulty of conditions as
compared with controls (Silverstein et al. 1996a); (2) This
patient group performs better in tasks where it is advan-
tageous to see the trees, not the forest (Place & Gilmore
1980; Rabinowicz et al. 1996). These perceptual disorders
thus fit well with those to be expected, given impairments to
the processes of contextual coordination hypothesized in
the target article, however several unresolved issues then
arise.

1. This patient group shows no deficits in grouping under
conditions where there are either strong stimulus cues to
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grouping (Knight 1992) or a strong push to allocate atten-
tion to global properties (Silverstein et al. 1996a). The
hypothesis must therefore be expressed in terms of a
reduced tendency to use grouping, and this needs further
conceptual clarification and empirical testing. Gestalt
grouping processes may not be at all impaired, either
because they are genetically specified, or because if they
are acquired or refined by visual input then the input
correlations upon which they depend are so over-
whelmingly present in natural input that they are learned to
asymptotic levels even by an impaired learning mechanism.
The acquisition of new assemblies at higher levels is not
based upon such strong statistical structure, however, so
impairments in acquiring and using those may be associated
with impaired binding and reduced synchronization both
within and between regions.

2. As Silverstein & Schenkel note, the evidence sug-
gests impairments of perceptual learning as well as of
perceptual processing, and this is in keeping with other
perspectives on this disorder (e.g., Gray et al. 1991). An
unresolved issue that arises here is whether it is only CF
learning (i.e., assembly formation) that is impaired and, if
so, how this can be reconciled with the hypothesis that CFs
guide RF learning.

3. Some of the top-down attentional effects on percep-
tual grouping that have been shown to be impaired in
schizophrenia clearly involve episodic and working memory
processes (Silverstein et al. 1996b). The framework as
presented in the target article would therefore have to be
extended to show how it is related to higher level processes
such as attention and episodic and working memory, if it is
to be applicable to such findings. The value of such an
extension is also emphasized by Bugmann, König et al.,
and Tononi & Edelman (sect. R3).

4. It is easy to see how an impairment in contextual
coordination could produce symptoms of disorganization,
but it may at first seem less easy to see how it could account
for the positive symptoms, such as hearing voices. One
approach would be to seek a separate explanation for these
positive symptoms. Alternatively, we could speculate that
they may reflect: (1) reduced modulatory control by exter-
nal input of the flow of activity arising from internal
thoughts; and (2) reduced knowledge of the source of
internal speech and percepts because of reduced inter-
regional binding.4 The pharmacological evidence encour-
ages the search for an integrated explanation because drug-
induced psychoses that reduce NMDA activity mimic both
positive and negative symptoms (Krystal et al. 1994).

Silverstein & Schenkel’s hypothesis thus survives close
scrutiny well and, as they argue, it opens important direc-
tions for further work. One possibility may be to study the
effect of drug-induced psychoses on perceptual learning
and inter-regional synchrony using local field potentials.
More broadly, this hypothesis should encourage physiologi-
cal, psychological, and neuroimaging studies of contextual
coordination in schizophrenic and drug-induced psychotic
states using both human and animal subjects.

R8. Science as a search for coherence

It is suggested by Treves that if the commentaries “turn out
not to be fully sychronized” (by which we assume he means
not in full agreement) then they will contribute to the
population response but by means other than synchronizing

it. We agree that it may be both revealing and entertaining
to draw an analogy between the outputs of local cortical
processors and scientific writings. Each paper written tries
to convey something that is both distinctive and relevant.
Relevance does not imply agreement, however. Different
members of a group can have opposing effects at a higher
level of analysis. The primary code used by BBS to signal
mutual relevance is simultaneous publication of target
articles and associated commentaries, that is, grouping
through synchronous transmission. This is not because
synchrony is necessary to grouping, but because it makes it
a lot easier for readers to process them as a whole.

This analogy is also useful for another reason. By seeing
science as a continuation of the search for coherence, by
means beyond the reach of any algorithm possessed by
mammals in general, we are reminded that local processors
should be seen as moving toward that goal, not as reaching
it (sect. R7.1.1).

R9. Promising directions for future progress

Specialization of function has been the keynote of this
century. Coordination of function may be the keynote of the
next. This will require more attention to contextual interac-
tions, synchronized population codes, and fast dynamics.
We believe that future research must emphasize relational
codes rather than focusing only upon response properties of
single cells. The relevant relations can be detected only by
analyzing simultaneously recorded activity. We shall have to
look at the outputs of any processing level in the same
comprehensive way as it is looked at by the subsequent
processing stages to which it projects. This requires analysis
of mutual dependencies among the responses of a large
number of neurons, and hence the study of ensemble
dynamics. There is thus a logical progression from early
studies of the topology of brain functions, to the functional
analysis of individual neurons located in different com-
partments, and now to the attempt to understand the
spatio-temporal patterns of coordinated neuronal activity.
In conclusion, then, our prediction is that the temporal
organization and coordination of brain activity is as sophisti-
cated and subtle as is its topological organization, the
former being an emergent property of the latter.

ACKNOWLEDGMENTS
We thank Peter Hancock, Jim Kay, Steve Silverstein, Leslie Smith,
and Darragh Smyth for comments on a draft of this response.

NOTES
1. Indeed, if NMDA receptor activation is combined with

oscillatory modulation of the membrane potential, latency of
responses is shifted as a function of oscillation phase and output
phase is locked to input phase (Volgushev et al., submitted). This
can synchronize discharges within a single oscillation cycle with
high temporal precision because of the voltage-dependent gating
of the MG21-block, which allows for very rapid activation and
inactivation of NMDA-receptor mediated input.

2. Evidence is becoming available that it is not the absolute
level of postsynaptic depolarization or the absolute level of the
postsynaptic Ca21-surge alone that determines whether a particu-
lar synapse undergoes LTP or LTD. The actual state of the
synapse, that is, the actual release probability with which it
operates (Volgushev et al. 1997) and the rate with which it is
activated during induction of the modification also matter (Hansel
et al., in preparation). Thus synaptic changes are affected by
information stored locally at each synapse, and this makes complex
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learning rules such as those of Phillips et al. (1995b) and Kay et al.
(in press) less implausible.

3. The simulations assume four levels of organization: cells,
units, local processors, and layers. They operate at the level of
units, but assume them to be composed of stochastic binary
elements. The simulation shown in Figure 10 is intended to be
analogous to the perception of an ambiguous figure, such as the
Rubin vase, where alternative perceptions emerge successively,
even though the external stimulus does not change. Thus, in
contrast to what Palm & Wennekers assumed, the input cannot
represent direct input from the external stimulus. Instead, the
processing layer to which the simulation relates is assumed to be
some layers distant from the external stimulus. Its inputs from the
previous layer fluctuate because processing is stochastic. Palm &
Wennekers suggest that the simulation in Figure 10 would work in
the same way if the graded response units were replaced by single
binary units. This is not so. If outputs are restricted to their
extremal values, the CFs have no effect, in which case the outputs
in at each iteration in Figure 10 would simply be identical to the
inputs. We should therefore have made in clear in section 3.1 that
the apparent insensitivity of performance to such a replacement
refers only to the learning, with which most of the simulations
were concerned. The two sets of 3 3 3 units with internal
coherence in the study of grouping shown in Figure 10 represent
the two alternative percepts. CFs were therefore positive within
and negative between these two alternative groupings. The back-
ground elements received no CF input. The first six iterations
show the simultaneous emergence from the background of all
elements in one of the two alternative groupings. Thus, contrary to
what Palm & Wennekers conclude, this demonstrates the role of
internal grouping processes, because the coherent sets of ele-
ments are distinguished from the background only by their CFs.
To show the successive emergence of alternative percepts activity
in the units was stopped and restarted after six simulations. The
cortex is not short of mechanisms that would have such an effect,
so there is no need for either it or a simulation to become stuck in
the stationary state to which Palm & Wennekers refer. The choice
of six iterations was arbitrary, but by varying it in an appropriate
way periodic or other temporal structure could easily be intro-
duced to the simulation. That would not change the effects with
which it was concerned, however.

4. The latter possibility was suggested to us by Frith’s (1992)
interpretation of psychotic hallucinations as being due to a failure
of self-monitoring. Words activated within the articulatory-loop
can arise from either internal or external sources. Their source
may therefore be unknown if they are not bound to activity in the
other cortical modules from which they arise.
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Braitenberg, V. & Schüz, A. (1991) Anatomy of the cortex. Springer-
Verlag. [aWAP]

Bressler, S. L. (1995) Large scale cortical networks and cognition. Brain
Research Reviews 20:288–304. [PLN]

Brousse, O. & Smolensky, P. (1989) Virtual memories and massive generalization
in connectionist combinatorial learning. In: Proceedings of the 11th Annual
Conference of the Cognitive Science Society. Erlbaum. [aWAP]

Bruce, V. (1988) Recognising faces. Erlbaum. [aWAP]
Bruner, J. S. (1972) Beyond the information given. Norton. [GT]
Bugmann, G. & Taylor, J. G. (1993) A model for latencies in the visual system.

In: Proceedings of the third conference on artificial neural networks
(ICANN’93, Amsterdam), ed. S. Gielen & B. Kappen. Springer-Verlag.
[GB]

(1994a) Role of short-term memory in neural information propagation. In:
Extended abstract book of the International Symposium on Dynamics of
Neural Processing, Washington. [GB]

(1994b) A top-down model for neuronal synchronization. Research Report
NRG-94–02, School of Computing, University of Plymouth. [GB]

Bullier, J., Munk, M. H. J. & Nowak, L. G. (1992) Synchronization of neuronal
firing in areas V1 and V2 of the monkey. Society of Neuorsciences Abstracts
18:11.7. [aWAP]

Bullock, T. H., McClune, M. C., Achimowicz, J. Z., Iragui-Madoz, V. J.,
Duckrow, R. B. & Spencer, S. S. (1995) EEG coherence has structure in
the millimeter domain: Subdural and hippocampal recordings from epileptic
patients. Electroencephalography and Clinical Neurophysiology 95:161–
77. [PLN]

Byrne, R. W. & Whiten, A. (1992) Cognitive evolution in primates: Evidence
from tactical deception. Man 27:609–27. [aWAP]

Calev, A., Venables, P. H. & Monk, A. F. (1983) Evidence for distinct verbal
memory pathologies in severely and mildly disturbed schizophrenics.
Schizophrenia Bulletin 9:247–64. [SMS]

Campbell, R. N. & Olson, D. R. (1990) Children’s thinking. In: Understanding
children: Essays in honour of Margaret Donaldson, ed. R. Grieve & M.
Hughes. Blackwell. [aWAP]

Carpenter, G. A. (1989) Neural network models for pattern recognition and
associative memory. Neural Networks 2:243–57. [aWAP] 

Carpenter, G. A. & Grossberg, S. (1991) Pattern recognition by self-organizing
neural networks. MIT Press. [SG]

(1993) Normal and amnesic learning, recognition, and memory by a neural
model of cortico-hippocampal interactions. Trends in Neurosciences 16:131–
37. [SG]

Castelfranco, A.M., Robertson, L. T. & McCollum, G. (1993) Detail, proportion,

and foci among face receptive fields of climbing fiber responses in the cat
cerebellum. Somatosensory and Motor Research 11:27–46. [GM]

Cattell, J. M. (1886) The time taken up by the cerebral operations. Mind
11:377–92. [aWAP]

Chevalier-Skolinkoff, S. (1983) Sensori-motor development in orangutans and
other primates. Journal of Human Evolution 12:545–46. [aWAP]

Chiang, C., von Stein, A. & König, P. (1996) Synchronous activity between
primary visual and sensorimotor cortex in awake behaving cat. Society for
Neuroscience Abstracts 22:255.2. [PK]

Cirelli, C., Pompeiano, M. & Tononi, G. (1996) Neuronal gene expression in the
waking state: A role for the Locus Coeruleus. Science 274:1211–15. [GT]

Clark, A. & Thornton, C. (1997) Trading spaces: Computation, representation
and the limits of uninformed learning. Behavioral and Brain Sciences 20(1)
57–90. [aWAP]

Clothiaux, E. E., Cooper, L. N. & Bear, M. F. (1991) Synaptic plasticity in visual
cortex: Comparison of theory with experiment. Journal of Neurophysiology
66: 1785–1804. [aWAP]

Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. (1995)
Synchronization of neuronal activity in hippocampus by individual
GABAergic interneurons. Nature 378:75–78. [rWAP]

Cohen, J. D. & Servan-Schreiber, D. (1992) Context, cortex, and dopamine: A
connectionist approach to behavior and biology in schizophrenia.
Psychological Review 99:45–77. [SMS]

Connors, B. W. & Gutnick, M. J. (1990) Intrinsic firing patterns of diverse
neocortical neurons. Trends in the Neurosciences 13:99–104. [rWAP]

Cox, M. D. & Leventhal, D. N. (1978) A multivariate analysis and modification
of a preattentive perceptual dysfunction in schizophrenia. Journal of
Nervous and Mental Disease 166:709–18. [rWAP]

Creutzfeldt, O. D. (1978) The neocortical link: Thoughts on the generality of
structure and function of the neocortex. In: Architectonics of the cerebral
cortex, ed. M. A. B. Brazier & H. Petsche. Raven Press. [JVS]

Crick, F. (1988) What mad pursuit. Penguin. [aWAP]
(1989) The recent excitement about neural networks. Nature 337:129–

32. [DF]
Crick, F. & Koch, C. (1990) Towards a neurobiological theory of consciousness.

Seminars in the Neurosciences 2:263–75. [aWAP]
Damasio, A. R. (1989) The brain binds entities and events by multiregional

activity from convergence zones. Neural Computation 1:123–32. [aWAP]
D’Angelo, E., Rossi, P. & Garthwaite, J. (1990) Dual-component NMDA

receptor currents at a single central synapse. Nature 346:467–69. [rWAP]
Das, A. & Gilbert, C. D. (1995) Long-range horizontal connections and their

role in cortical reorganization revealed by optical recording of cat primary
visual cortex. Nature 375:780–84. [aWAP]

deCharms, R. C. & Merzenich, M. M. (1996) Primary cortical representation of
sounds by the coordination of action-potential timing. Nature 381:610–
13. [rWAP]

De Loach, J. (1987) Rapid change in the symbolic functioning of very young
children. Science 238:1556–57. [aWAP]

Der, R. & Smyth, D. (in press) Local online learning of coherent information.
Neural Networks. [aWAP]

de Sa, V. (1994a) Unsupervised classification learning from cross-modal
environmental structure. PhD thesis, University of Rochester, NY. [aWAP]

(1994b) Learning classification with unlabeled data. In: Advances in neural
information processing systems 6. Morgan Kaufmann. [aWAP]

de Sa, V. & Ballard, D. H. (1997) Category learning through multi-modality
sensing. Neural Computation (in press). [arWAP]

Douglas, R. J. & Martin, K. A. C. (1990) Neocortex. In: The synaptic
organization of the brain, ed. G. M. Shepherd. Oxford University
Press. [aWAP]

Douglas, R. J. & Martin, K. A. C. (1991a) A functional microcircuit for cat visual
cortex. Journal of Physiology 440:735–69. [PK]

(1991b) Opening the grey box. Trends in the Neurosciences 14:286–
93. [aWAP]

(1994) The canonical microcircuit: A co-operative neuronal network for
neocortex. In: Structural and functional organization of the neocortex, ed. B.
Albowitz, K. Albus, U. Kuhnt, H.-Ch. Nothdurft & P. Wahle. Springer-
Verlag. [JVS]

Dudek, S. M. & Bear, M. F. (1992) Homosynaptic long-term depression in area
CA1 of hippocampus and the effects on NMDA receptor blockade.
Proceedings of the National Academy of Sciences USA 89:4363–
67. [aWAP]

Durgin, F. H. (1995) Contingent aftereffects of texture density: Perceptual
learning and contingency. PhD thesis, Department of Psychology, University
of Virginia. [aWAP]

Ebdon, M. (1993) Is the cerebral neocortex a uniform cognitive architecture?
Mind and Language 8(3):369–403. [JVS]

Eckhorn, H. (1997, in press) Neural mechanisms of scene segmentation. Journal
of Artificial Neural Networks. [RE]



References/Phillips & Singer: Cortical computation

716 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

Eckhorn, R. (1994) Oscillatory and non-oscillatory synchronizations in the visual
cortex and their possible roles in associations of visual features. Progress in
Brain Research 102:405–26. [GP]

Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. &
Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature
linking in the visual cortex? Biological Cybernetics 60:121–130. [RE,
DLW] 

Eckhorn, R., Dicke, P., Arndt, M., & Reirboeck, H. (1991a) Flexible linking of
visual features by stimulus-related synchronizations of model neurons. In:
Induced rhythms in the brain, ed. E. Basar & T. H. Bullock.
Birkhauser. [aWAP]

Eckhorn, R., Frien, A., Bauer, R., Woelbern, T. & Kehr, H. (1993) High
frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey.
NeuroReport 4:243–46. [RE]

Eckhorn, R. & Gruesser, O. -J., Kroeller, J., Pellnitz, K. & Poepel, B. (1976)
Efficiency of different neural codes. Biological Cybernetics 22:40–60. [RE]

Eckhorn, R., Reitboeck, H. J., Arndt, M. & Dicke, P. (1990) Feature linking
among distributed assemblies. Neural Computation 2:293–306. [RE]

Eckhorn, R., Schanze, T. Brosch, M., Salem, W. & Bauer, R (1991b) Stimulus-
specific synchronizations in cat visual cortex: Multiple microelectrode and
correlation studies from several cortical areas. In: Induced rhythms in the
brain, ed. E. Basar & T. H. Bullock. Birkhauser. [aWAP]

Edelman, G. M. (1978) Group selection and phasic re-entrant signalling: A
theory of higher brain function. In: The mindful brain, ed. G. M. Edelman
& V. B. Mountcastle. MIT Press. [aWAP, GT]

(1987) Neural Darwinism: The theory of neuronal group selection. Basic
Books. [PK, GT]

(1989) The remembered present: Biological theory of consciousness. Basic
Books. [aWAP]

(1993) Neural Darwinism: Selection and re-entrant signalling in higher brain
function. Neuron 10:1–20. [GT]

Edelman, G. M. & Mountcastle, V. B. (1978) The mindful brain. MIT
Press. [aWAP]

Ellis, A. W. & Young, A. W. (1988) Human cognitive neuropsychology.
Erlbaum. [aWAP]

Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B. & Singer, W. (1992)
Temporal coding in the visual cortex: New vistas on integration in the
nervous system. Trends in the Neurosciences 15:218–26. [aWAP]

Engel, A. K., König, P, Kreiter, A. K. & Singer, W. (1991a) Interhemispheric
synchronization of oscillatory neuronal responses in cat visual cortex. Science
252:1177–79. [MI, arWAP]

Engel, A. K., König, P, & Singer, W. (1991b) Direct physiological evidence for
scene segmentation by temporal coding. Proceedings of the National
Academy of Sciences USA 88:9136–40. [GB, arWAP]

Engel, A. K., Kreiter, A. K., König, P. & Singer, W. (1991c) Synchronization of
oscillatory neuronal response between striate and extrastriate visual cortical
areas of the cat. Proceedings of the National Academy of Sciences USA
88:6048–52. [arWAP]

Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex 1:1–47. [aWAP]

Field, D. J., Hayes, A. & Hess, R. F. (1993) Contour integration by the human
visual system: Evidence for a local “association” field. Vision Research
33:173–79. [SG, arWAP]

Finkel, L. H. & Edelman, G. M. (1989) The integration of distributed cortical
systems by reentry: A computer simulation of interactive functionally
segregated visual areas. Journal of Neuroscience 9:3188–208. [aWAP]

Fishman, M. C. & Michael, C. R. (1973) Integration of auditory information in
the cat’s visual cortex. Vision Research 13:1415–19. [aWAP] 

Floreano, D., Phillips, W. A. & Kay J. (1995) A computational theory of learning
visual features via contextual guidance. Perception 24(suppl):22. [aWAP]

Fodor, J. A. & Pylyshyn, Z. W. (1988) Connectionism and cognitive architecture:
A critical analysis. Cognition 28:3–71. [aWAP]

Foldiak, P. (1990) Forming sparse representations by local anti-Hebbian learning.
Biological Cybernetics 64:165–70. [aWAP]

(1991) Learning invariance from transformation sequences. Neural
Computation 3(2):194–200. [JVS]

Fox, K. & Daw, N. (1992) A model for the action of NMDA conductances in the
visual cortex. Neural Computation 4:59–83. [aWAP]

Fox, K., Sato, H. & Daw, N. (1990) The effect of varying stimulus intensity on
NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology
64:1413–28. [aWAP]

Francis, G., Grossberg, S. & Mingolla, E. (1994) Cortical dynamics of feature
binding and reset: Control of visual persistence. Vision Research 34:1089–
1104. [SG]

Freiwald, W. A., Kreiter, A. K. & Singer, W. (1995) Stimulus dependent
intercolumnar synchronization of single unit responses in cat area 17.
NeuroReport 6:2348–52. [rWAP]

Frien, A., Eckhorn, R., Bauer, R., Woelbern, T. & Kehr, H. (1994) Stimulus-

specific fast oscillations at zero phase between visual areas V1 and V2 of
awake monkey. NeuroReport 5:2273–77. [RE]

Frien, A., Eckhorn, R. & Reitboeck, H. J. (1996) Fast oscillations in V1 of awake
monkey. Society for Neuroscience Abstracts 22:255.5. [RE]

Fries, P., Roelfsma, P. R., Engel, A. K., König, P. & Singer, W. (1996)
Synchronized gamma frequency oscillations correlate with perception during
binocular rivalry in awake squinting cats. Society of Neuroscience Abstracts
22(1):117.3 [arWAP]

Friston, K. J., Tononi, G., Reeke, G. N., Jr., Sporns, O. & Edelman, G. M.
(1994) Value-dependent selection in the brain: Simulation in a synthetic
neural model. Neuroscience 59:229–43. [GT]

Frith, C. D. (1992) The Cognitive neuropsychology of schizophrenia.
Erlbaum. [rWAP]

Gallistel, C. R. (1995) The replacement of general-purpose theories with
adaptive specializations. In: The cognitive neurosciences, ed. M. S.
Gazzaniga. MIT Press. [aWAP]

Geman, S., Bienenstock, E. & Doursat, R. (1992) Neural networks and the
bias/variance dilemna. Neural Computation 4:1–58. [GT]

Georgopoulos, A. P. (1990) Neural coding of the direction of reaching and a
comparison with saccadic eye-movements. Cold Spring Harbour Symposium
on Quantitative Biology 55:849–59. [aWAP]

Gerstner, W. (1995) Time structure of the activity in neural network models.
Physical Review E 51(6):738–58. [GP]

Ghose, G. M. & Freeman, R. D. (1992) Oscillatory discharge in the visual
system: Does it have a functional role? Journal of Neurophysiology 68:1558–
74. [VGH]

Giffins, R. (1985) Canonical analysis: A review with applications in ecology
(Biomathematics 12). Springer-Verlag. [aWAP]

Gilbert, C. D. (1992) Horizontal integration and cortical dynamics. Neuron 9:1–
13. [aWAP]

(1995) Dynamic properties of adult visual cortex. In: The cognitive
neurosciences, ed. M. S. Gazzaniga. MIT Press. [aWAP]

Gilbert, C. D. & Wiesel, T. N. (1983) Clustered intrinsic connections in cat
visual cortex. Journal of Neuroscience 3:1116–33. [aWAP]

(1989) Columnar specificity of intrinsic horizontal and cortico-cortical
connections in cat visual cortex. Journal of Neuroscience 9:2432–
42. [aWAP]

(1990) The influence of contextual stimuli on the orientation selectivity of cells
in primary visual cortex of the cat. Vision Research 11:1689–1701. [aWAP]

Gluck, M. A. & Rumelhart, D. E. (1990) Neuroscience and connectionist theory.
Erlbaum. [aWAP]

Goebel, R. (1993) Perceiving complex visual scenes: An oscillator neural network
model that integrates selective attention, perceptual organisation, and
invariant recognition. In: Advances in neural information processing systems
5, ed. S. J. Hanson, J. D. Cowan & C. L. Giles. Morgan
Kaufmann. [aWAP]

Golomb, D., Hertz, J., Panzeri, S., Treves, A. & Richmond, B. J. (1997) How
well can we estimate mutual information from limited samples of neuronal
responses? Neural Computation 9:649–65. [AT]

Goodall, W. C. (1994) Neuropsychological studies of reading and writing. PhD
thesis, University of Stirling, Scotland, UK. [aWAP]

Goodall, W. C. & Phillips, W. A. (1994) Three routes from print to sound:
Evidence from a case of acquired dyslexia. Cognitive Neuropsychology
12:113–47. [aWAP]

Gove, A., Grossberg, S. & Mingolla, E. (1995) Brightness perception, illusory
contours, and corticogeniculate feedback. Visual Neuroscience 12:1027–
52. [SG]

Gray, C. M., König, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects global
stimulus properties. Nature 338:334–37. [JMB, arWAP, DLW]

Gray, C. M. & McCormick, D. A. (1996) Chattering cells - superficial pyramidal
neurons contributing to the generation of synchronous oscillations in the
visual cortex. Science 274:109–13. [JJW]

Gray, C. M. & Singer, W. (1989) Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex. Proceedings of the National
Academy of Sciences USA 86:1698–1702. [aWAP]

Gray, C. M. & Viana Di Prisco, G. (1993) Properties of stimulus-dependent
rhythmic activity of visual cortical neurons in the alert cat. Society of
Neuroscience Abstracts 19:359.8. [aWAP]

Gregson, R. A. M. (1988) Nonlinear psychophysical dynamics. Erlbaum
Associates. [RAMG]

(1992) n-Dimensional nonlinear psychophysics. Erlbaum Associates. [RAMG]
(1993) Learning in the context of nonlinear psychophysics: The Gamma Zak

Embedding. British Journal of Mathematical and Statistical Psychology
46:31–48. [RAMG]

(1995) Cascades and fields in perceptual psychophysics. World
Scientific. [RAMG]

(1996) n-Dimensional nonlinear psychophysics: Intersensory interaction as a



References/Phillips & Singer: Cortical computation

BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4 717

network at the edge of chaos. In: Fractals of brain, fractals of mind, ed. E.
MacCormac & M. I. Stamenov. John Benjamins. [RAMG]

Gregson, R. A. M. & Harvey, J. P. (1992) Similarities of low-dimensional chaotic
auditory attractor sequences to quasirandom noise. Perception and
Psychophysics 51:267–78. [RAMG]

Grossberg, S. (1968) Some nonlinear networks capable of learning a spatial
pattern of arbitrary complexity. Proceedings of the National Academy of
Sciences 60:758–65. [SG]

(1971) Pavlovian pattern learning by nonlinear neural networks. Proceedings of
the National Academy of Sciences 68:828–31. [SG]

(1982) Studies of mind and brain. Reidel. [SG]
(1987) The adaptive brain, vol. II. Elsevier. [SG]
(1993) Self-organizing neural models of categorization, inference and

synchrony. Behavioral and Brain Sciences 16:460–61. [aWAP]
(1995) The attentive brain. American Scientist 83:438–49. [SG]

Grossberg, S., Boardman, L. & Cohen, M. (1997a) Neural dynamics of variable-
rate speech categorization. Journal of Experimental Psychology: Human
Perception and Performance 23:481–503. [SG]

Grossberg, S. & Mingolla, E. (1985) Neural dynamics of perceptual grouping:
Textures, boundaries, and emergent segmentations. Perception and
Psychophysics 38:141–71. [SG]

Grossberg, S., Mingolla, E. & Ross, W. (1997b) Visual brain and visual
perception: How does the cortex do perceptual grouping? Trends in
Neurosciences 20:106–111. [SG]

Grossberg, S. & Somers, D. (1991) Synchronized oscillations during cooperative
feature linking in a cortical model of visual perception. Neural Networks
4:453–66. [SG, aWAP]

Guettler, A., Eckhorn, R., Juergens, E. & Frien, A. (1997) Neural correlation
contrast in visual cortex of monkey changes with stimulus contrast across
an object-background-border. In: From membrane to mind. Thieme.
[RE]

Gur, M. & Akri, V. (1992) Isoluminant stimuli may not expose the full
contribution of color to visual functioning: Spatial contrast sensitivity
measurements indicate interaction betwen color and luminance processing.
Vision Research 32:1253–62. [aWAP]

Hamming, R. W. (1980) Coding and information theory. Prentice-Hall. [aWAP]
Hancock, P. J. B., Smith, L. S. & Phillips W. A. (1991a) A biologically supported

error-correcting learning rule. Neural Computation 3:201–12. [arWAP]
(1991b) A biologically supported error-correcting learning rule. In: Proceedings

of the International Conference on Artificial Neural Networks, ed O. Simula.
Elsevier. [arWAP]

Hansel, C., Artola, A. & Singer, W. (in preparation) Relation between dendritic
Ca2+ levels and the polarity of synaptic long-term modifications in rat visual
cortex neurons. [rWAP]

Harter, M. R. (1967) Excitability cycles and cortical scanning: A review of two
hypotheses of central intermittency in perception. Psychological Bulletin
68:47–58. [VGH]

Hebb, D. O. (1949) The organization of behaviour. Wiley. [PK, GP, aWAP]
Heeger, D. J. (1993) Modeling single cell direction selectivity with normalized,

half-squared, linear operators. Journal of Neurophysiology 70(5):1885–
98. [DS]

Hestrin, S., Sah, P. & Nicoll, R. A. (1990) Mechanisms generating the time
course of dual component excitatory synaptic currents recorded in
hippocampal slices. Neuron 5:247–53. [rWAP]

Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed
representations. In: Parallel distributed processing. Explorations in the
microstucture of cognition, vol. 1, ed. D. E. Rumelhart. & J. L. McClelland.
MIT Press. [aWAP]

Hirsch, J. A. & Gilbert, C. D. (1991) Synaptic physiology of horizontal
connections in cat’s visual cortex. Journal of Neuroscience 11:1800–
9. [arWAP]

(1993) Long-term changes in synaptic strength along specific intrinsic
pathways in the cat visual cortex. Journal of Physiology 461:247–
62. [aWAP]

Hopfield, J. J. (1982) Neural networks and physical systems with emergent
collective computational capabilities. Proceedings of the National Academy
of Sciences USA 79:2554–58. [arWAP]

Horgan, J. (1995) From complexity to perplexity. Scientific American June:74–79.
[aWAP]

Hotelling, H. (1936) Relations between two sets of variables. Biometrika 28:321–
77. [aWAP]

Huang, Y-Y., Colino, A., Selig, D. K. & Malenka, R. C. (1992) The influence of
prior synaptic activity on the induction of long-term potentiation. Science
255:730–33. [aWAP]

Hummel, J. E. & Biederman, I. (1992) Dynamic binding in a neural network for
shape recognition. Psychological Review 99:480–517. [aWAP]

Hummel, J. E. & Holyoak, K. J. (1993) Distributing structure over time.
Behavioral and Brain Sciences 16:464. [aWAP]

Humphreys, G. W. & Riddoch, M. J. (1987) To see but not to see: A case study
of visual agnosia. Erlbaum. [aWAP]

Humphreys, G. W., Troscianko, T., Riddoch, M. J., Boucart, M. Donnely, N. &
Harding, G. F. A. (1992) Covert processing in different visual recognition
systems. In: The neuropsychology of consciousness, ed. A. D. Milner &
M. D. Rugg. Academic Press. [aWAP]

Iacoboni, M., Rayman, J. & Zaidel, E. (1996a) Left brain says yes, right brain
says no: Normative duality in the split brain. In: Toward a science of
consciousness: The first Tucson discussions and debates, eds. S. R.
Hameroff, A. W. Kaszniak, A. C. Scott. MIT Press. [MI]

(in preparation) Lateralized lexical decision with unilateral and bilateral
presentations: Evidence from the split brain. [MI]

Iacoboni, M., Woods, R. P., Lenzi, G. L. & Mazziotta, J. C. (1997) Merging of
oculomotor and somatomotor space coding in the human right precentral
gyrus. Brain 120(3). [MI]

Iacoboni, M., Woods, R. P. & Mazziotta, J. C. (1996b) Brain-behavior
relationships: Evidence from practice effects in spatial stimulus-response
compatibility. Journal of Neurophysiology 76:321–31. [MI]

Iacoboni, M. & Zaidel, E. (1996) Hemispheric independence in word
recognition: Evidence from unilateral and bilateral presentations. Brain and
Language 53:121–40. [MI]

Ingber, L. (1985) Statistical mechanics of neocortical interactions: Stability and
duration of the 71/- rule of short-term memory capacity. Physical Review
A., 31:1183–86. [PLN]

(1995) Statistical mechanics of multiple scales of neocortical interactions. In:
Neocortical dynamics and human EEG rhythms, ed. P. L. Nunez. Oxford
University Press. [PLN]

Intrator, N. & Cooper, L. N. (1995a) Information theory and visual plasticity. In:
The handbook of brain theory and neural networks, ed. M. A. Arbib. MIT
Press. [arWAP]

(1995b) BCM theory of visual cortical plasticity. In: The handbook of brain
theory and neural networks, ed. M. A. Arbib. MIT Press. [arWAP]

Ishai, A & Sagi, D. (1995) Common mechanisms of visual perception and
imagery. Science 268:1772–74. [aWAP]

Jakobson, R. (1964) Towards a linguistic typology of aphasic impairments. In:
Disorders of language. Cyba Foundation Symposium, ed. A. V. S. de Reuck
& M. O’Connor. Little, Brown & Company. [VGH]

James, W. (1890) The Principles of Psychology. Reprint. Dover. [GT]
Jensen, O., Idiart, M. A. P. & Lisman, J. E. (1996) Physiologically realistic forma-

tion of autoassociative memory in networks with theta/gamma oscillations:
Role of fast NMDA channels. Learning and Memory 3:243–56. [rWAP]

Jerison, H. J. (1973) Evolution of the brain and intelligence. Academic
Press. [aWAP]

Jirsa, V. K. & Haken, H. (1996) Field theory of electromagnetic brain activity.
Physical Review Letters 77: 960–63. [PLN]

Johnston, J. C. & McClelland, J. L. (1973) Visual factors in word perception.
Perception and Psychophysics 14:365–70. [aWAP]

Juergens, E. & Eckhorn, R. (1997) Parallel processing by a homogenous group
of coupled model neurons can enhance, reduce and generate signal
correlations. Biological Cybernetics 76:217–27. [RE]

Kaas, J. H. (1995) The reorganization of sensory and motor maps in adult mam-
mals. In: The cognitive neurosciences, ed. M. S. Gazzaniga. MIT
Press. [aWAP]

Kanevsky, D. (1989) A multiple source, or, is a striped apple more than a striped
orange? Behavioral and Brain Sciences 12:767–69. [aWAP]

Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. (1995) Improvement
in visual sensitivity by changes in local context: Parallel studies in human
observers and in V1 of alert monkeys. Neuron 15:843–56. [SG, aWAP]

Karni, A. & Sagi, D. (1991) Where practice makes perfect in texture
discrimination: Evidence for primary visual cortex plasticity. Proceedings of
the National Academy of Sciences USA 88:4966–70. [aWAP]

Kastner, S., Nothdurft, H. -C. & Pigarev, I. N. (1997) Neuronal correlates of
pop-out in cat striate cortex. Vision Research 37(4):371–76. [DS]

Katznelson, R. D. (1981) Normal modes of the brain: Neuroanatomic basis and a
physiologic theoretical model. In: Electric fields of the brain: The
neurophysics of EEG, ed. P. L. Nunez. Oxford University Press. [PLN]

Kay, J. (1992) Feature discovery under contextual supervision using mutual
information. Proceedings of the International Joint Conference on Neural
Networks Book 4:79–84. Baltimore. [aWAP]

Kay, J., Floreano, D. & Phillips, W. A. (in press) Contextually guided unsupervised
learning using local multivariate binary processors. Neural Networks. [aWAP]

Kay, J. & Phillips, W. A. (1994) Activation functions, computational goals and
learning rules for local processors with contextual guidance (Technical
Report CCCN-15). Centre for Cognitive and Computational Neuroscience,
University of Stirling, Scotland, UK. [aWAP]

Kay, J. & Phillips, W. A. (1997) Activation functions, computational goals and
learning rules for local processors with contextual guidance. Neural
Computation 9:763–78. [arWAP]



References/Phillips & Singer: Cortical computation

718 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:4

Kiper, D. C., Gegenfurtner, K. R. & Movshon, J. A. (1996) Cortical oscillatory
responses do not affect visual segmentation. Vision Research 36(4):539–
44. [rWAP]

Kirkwood, A., Rioult, M. G. & Bear, M. F. (1996) Experience-dependent
modification of synaptic plasticity in visual cortex. Nature 381:526–
28. [aWAP]

Kisvardy, Z. F., Martin, K. A. C., Freund, T. F., Magloczky, Z., Whitteridge, D.
& Somogyi, P. (1986) Synaptic targets of HRP-filled layer III pyramidal cells
in the cat striate cortex. Experimental Brain Research 64:541–52. [aWAP]

Knierem, J. J. & Van Essen, D. C. (1992) Neuronal responses to static texture
patterns in area V1 of the alert macaque monkey. Journal of
Neurophysiology 67:961–80. [aWAP]

Knight, R. A. (1992) Specifying cognitive deficiencies in poor premorbid
schizophrenics. In: Progress in experimental personality and
psychopathology research: Vol. 15, ed. E. F. Walker, R. H. Dworking &
B. A. Cornblatt. Springer.

Knight, R. A. & Silverstein, S. M. (In press) The role of cognitive psychology in
guiding research on cognitive deficits in schizophrenia. In: Experimental
psychopathology and the pathogenesis of schizophrenia, ed. M. F.
Lenzenweger & R. H. Dworkin. APA Press. [SMS]

Kohonen, T. (1982) Self-organizing formation of topologically correct feature
maps. Biological Cybernetics 43:59–69. [PM]
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