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Language and the Origin of Numerical Concepts
Rochel Gelman* and C. R. Gallistel*

Reports of research with the Pirahã and Mundurukú Amazonian Indians of Brazil lend
themselves to discussions of the role of language in the origin of numerical
concepts. The research findings indicate that, whether or not humans have an
extensive counting list, they share with nonverbal animals a language-independent
representation of number, with limited, scale-invariant precision. What causal role,
then, does knowledge of the language of counting serve? We consider the strong
Whorfian proposal, that of linguistic determinism; the weak Whorfian hypothesis,
that language influences how we think; and that the ‘‘language of thought’’ maps to
spoken language or symbol systems.

Intuitively, our thoughts are inseparable from

the words in which we express them. This

intuition underlies the strong form of the

Whorfian hypothesis, namely, that language

determines thought (aka Blinguistic de-

terminism[). Many cognitive scientists find

the strong hypothesis unintelligible and/or

indefensible (1), but weaker versions of it, in

which language influences how we think,

have many contemporary proponents (2, 3).

The strong version rules out the possibil-

ity of thought in animals and humans who

lack language, although there is an abundant

experimental literature demonstrating quan-

titative inference about space, time, and

number in preverbal humans (4), in individ-

uals with language impairments (5), and in

rats, pigeons, and insects (6). Another prob-

lem is the lack of specific suggestions as to

how exposure to language could generate the

necessary representational apparatus. It would

be wonderful if computers could be made to

understand the world the way we do just by

talking to them, but no one has been able to

program them to do this. This failure highlights

what is missing from the strong form of the

hypothesis, namely, suggestions as to how

words could make concepts take form out of

nothing.

The antithesis of the strong Whorfian

hypothesis is that thought is mediated by

language-independent symbolic systems, of-

ten called the language(s) of thought (7).

Under this account, when humans learn a

language, they learn to express in it con-

cepts already present in their prelinguistic

system(s). Their prelinguistic systems for

representing the world are language-like

only in that they are compositional: Larger,

more complex meanings (concepts) are

built up by the combination of elementary

meanings.

Recently reported experimental studies

(8, 9) with innumerate Pirah, and Mun-

durukU Indian subjects from the Brazilian

Amazonia give evidence regarding the role of

language in the development of numerical

reasoning. Either the subjects in these reports

have no true number words (8, 10) or they

have consistent, unambiguous words for one

and two and more loosely used words for

three and four (9). Moreover, they do not

overtly count, either with number words or by

means of tallies. Yet, when tested on a variety

of numerical tasks—naming the number of

items in a stimulus set, constructing sets of

equivalent number, judging which of two sets

is more numerous, and mental addition and

subtraction—these subjects gave results in-

dicative of an imprecise nonverbal represen-

tation of number, with a constant level of

imprecision, measured by the Weber frac-

tion. The Weber fraction for these subjects is

roughly comparable to that of numerate

subjects when they do not rely on verbal

counting. In one of the reports, the stimulus

sets had as many as 80 items, so the ap-

proximate representation of number in these

subjects extends to large numbers.

Among the most important results in these

reports are those showing simple arithmetic

reasoning—mental addition, subtraction, and

ordering. These findings strengthen the evi-

dence that humans share with nonverbal

animals a language-independent representation

of number, with limited, scale-invariant preci-

sion, which supports simple arithmetic compu-

tation and which plays an important role in

elementary human numerical reasoning,

whether verbalized or not (5, 11–13). Contrary

to (8) and to reports in the secondary media,

the results do not support the strong Whorfian

view that a concept of number is dependent on

natural language for its development. Indeed,

they are evidence against it. The results are,

however, consistent with the hypothesis that

learning to represent numbers by some com-

municable notation (number words, tally

marks, numerals) might facilitate the routine

recognition of exact numerical equality.

These reports suggest that people with

extremely limited or no verbal counting have

the same nonverbal representation of number

as do subjects with a fluent, well-developed

verbal counting system. The long-established

and robust symbolic size and distance effect

is a principal line of evidence for this

representation and for its importance in

discussions of verbal numerical reasoning:

Numerate subjects judge the ordering of

symbolized number with ease, but they have

no insight into how they do so. Most are

surprised to learn that it takes them longer to

decide that 3 9 2 than it does to decide that

5 9 2, whether the questions are posed

symbolically (3 9? 5) or with arrays instan-

tiating the numbers (Fig. 1, A and B). The

reaction time for judgments of numerical

order is a function of the ratio between the

numbers being judged. The function is the

same in monkeys as in numerate adults (Fig.

1, C and D).

The symbolic size and distance effects are

generally taken to indicate that the determi-

nation of numerical order by the brain

depends on imprecise mental magnitudes.

These are hypothesized variables in the brain

that vary systematically with number (and

other quantitative dimensions of experience)

and that form the basis for the subjective

sense of magnitude. They are called mental or

subjective magnitudes to distinguish them

from the objective magnitudes that they

represent. The mental magnitudes for repeat-

ed instantiations of an objective magnitude

vary, forming what communications engi-

neers call a signal distribution. The wider

these distributions, the more imprecise are the

representations. The extent to which two

signal distributions overlap determines the

likelihood of confusion about which distribu-

tion a signal belongs to, that is, which

objective magnitude generated it. It is as-

sumed that the extent of overlap between two

signal distributions is determined by the ratio

between the corresponding objective magni-

tudes (Fig. 2). The greater the likelihood of

confusion, the more processing time is re-

quired to determine the proper distribution.

This is the generally accepted explanation

for the symbolic size and distance effects. It

ties basic arithmetic reasoning (order judg-

ments) with numerical symbols to an impre-

cise nonverbal representation of number.

On the non-Whorfian account, the mental

magnitudes that represent number are an ex-

ample of elementary nonlinguistic represen-

tations (meanings) for which numerate
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subjects have learned words. Subjects believe

that the property denoted by Bthree[ may be

added to the property denoted by Btwo[ to

obtain the property denoted by Bfive[ because

this is already true for the prelinguistic con-

cepts to which the words refer and from which

they derive their meaning. That is, the mental

magnitude that represents three may be

mentally added to the mental magnitude that

represents two to get the mental magnitude

that represents five. Plausibly, the language

learner comes to believe that those words

have those meanings, precisely because she

observes that their use is consistent with those

meanings. Children hear, BThree and two are

five[ but not BCow and big are red.[ From the

syntactic frames in which words occur, much

may be inferred about their referents (14, 15).

In showing that subjects with no verbal

counting system have a concept of approxi-

mate numerical magnitude like that of

numerate subjects, these reports support the

non-Whorfian view for the origins of our

concept of number. However, there is more to

the story. Numerate subjects have a strong

intuition of exact numerical equality. Two

plus two is exactly four, not roughly four, and

the square root of two is not exactly equal to

the proportion between any two count num-

bers, that is, to any rational number, although

a rational number that is as close as one

wishes may readily be found. This aspect of

the meaning of number words is not readily

explained by the assumption that it is the ref-

erence to imprecise mental magnitudes that

gives number words their meanings. When the

non-numerate subjects in these reports

matched a set of four items to a set of five,

or judged that 6 – 3 0 2, they gave evidence of

being indifferent to exact numerical equality,

an indifference not seen in numerate control

subjects. Thus, the reports suggest that the

learning of number words either creates a

concept of exact numerical equality (a strong

Whorfian hypothesis), or mediates the expan-

sion of such a concept (a weaker Whorfian

hypothesis), or directs attention to such a

concept (a non-Whorfian hypothesis).

A current hypothesis of the second (weak

Whorfian) kind is the two-systems hypothe-

sis, which is that, in addition to the approxi-

mate representation of numerical magnitude,

there is a second prelinguistic representation,

limited to numbers from one to four (16).

Because this second, small-number-only

system is discrete and precise, exact equality

is intrinsic to the representation. It comes

from the identity of the representing symbols

(e.g., II K II). On these accounts, the acqui-

sition of a verbal counting system mediates

the extension of the notion of exact equality

to our concept of numbers greater than four.

The reports from experiments with non-

numerate subjects do not offer much support

for two-system hypotheses, because the

innumerate subjects represent three and four

imprecisely—and, arguably, even one and

two. This finding is also problematic for

closely related and long-popular hypotheses

that postulate perceptlike representations of

the numbers one to four (17, 18). If these

subjects have precise or percept-like pre-

linguistic representations of three and four,

then, curiously, they have no words that refer

unambiguously to them.

There are at least two conceptual problems

with dual-representation hypotheses. First, if

the words for the numbers one to four derive

their meaning from discrete, noise-free pre-

linguistic symbols or percepts, then why are

the symbolic size and distance effects seen in

this range? (Recall that these effects are

assumed to derive from the imprecision of

the mental magnitude representation of num-

ber.) Second, the compositionality of number

concepts is a sine qua non. If the brain

represents three and seven in fundamentally

different ways, how can it compose them

arithmetically (order them, add them, etc.)?

What representational form do the resulting

hybrids have? This is particularly puzzling

when two numbers beyond the discrete and

precise range are subtracted to yield a

number inside it, as in 7 – 5 0 2.

Nonetheless, reports of subjects who appear

indifferent to exact numerical equality even for

small numbers, and who also do not count

verbally, add weight to the idea that learning a

communicable number notation with exact nu-
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Fig. 2. Two common explanations for the size
and distance effects. (A) Scalar variability. The
mean mental magnitude is proportional to the
number, as is the variability about this mean.
Thus, the distributions are scale invariant, which
means that the overlap between any two of
them is determined by the ratio of their means.
(B) Logarithmic compression. The mean mental
magnitude is proportional to the logarithm of
the number, whereas the variability is indepen-
dent of it. Again, distributions for objective
magnitudes that differ by a given ratio (e.g.,
2:1) show the same overlap and, hence, the same
potential for confusion about which distribution
a particular signal properly belongs to.
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Fig. 1. The symbolic and nonsymbolic size and distance effects in the judgment of numerical order. (A)
Time taken to make the order judgment as a function of the difference between two single digits
(open circles) or between instantiations of the two numerosities (other symbols, nonsymbolic). (B)
Reaction time as a function of the size of the smaller digit or number of stimulus items. (C and D)
The distance effect for instantiated numbers is the same in humans and monkeys. [(A) and (B) are
based on figures 1 and 2 in (19); (C) and (D) are based on figure 26.5 in (12).]
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merical reference may play a role in the emer-

gence of a fully formed conception of number.

The challenge now is to delineate that role.
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R E V I E W

The Role of the Medial Frontal Cortex
in Cognitive Control

K. Richard Ridderinkhof,1,2* Markus Ullsperger,3 Eveline A. Crone,4 Sander Nieuwenhuis5

Adaptive goal-directed behavior involves monitoring of ongoing actions and per-
formance outcomes, and subsequent adjustments of behavior and learning. We
evaluate new findings in cognitive neuroscience concerning cortical interactions that
subserve the recruitment and implementation of such cognitive control. A review of
primate and human studies, along with a meta-analysis of the human functional
neuroimaging literature, suggest that the detection of unfavorable outcomes, re-
sponse errors, response conflict, and decision uncertainty elicits largely overlapping
clusters of activation foci in an extensive part of the posterior medial frontal cortex
(pMFC). A direct link is delineated between activity in this area and subsequent
adjustments in performance. Emerging evidence points to functional interactions
between the pMFC and the lateral prefrontal cortex (LPFC), so that monitoring-
related pMFC activity serves as a signal that engages regulatory processes in the
LPFC to implement performance adjustments.

Flexible goal-directed behavior requires an

adaptive cognitive control system for select-

ing contextually relevant information and for

organizing and optimizing information pro-

cessing. Such adaptive control is effortful,

and therefore it may not be efficient to main-

tain high levels of control at all times. Here

we review recent studies in cognitive neu-

roscience that have advanced our understand-

ing of how the brain determines and

communicates the need to recruit cognitive

control. Convergent evidence suggests that

the posterior medial frontal cortex (pMFC)

and lateral prefrontal cortex (LPFC) are im-

portant contributors to cognitive control. Our

focus is on the role of the pMFC in per-

formance monitoring, especially in situa-

tions in which pMFC activity is followed

by performance adjustments. Evaluating the

adequacy and success of performance is

instrumental in determining and implement-

ing appropriate behavioral adjustments. For

instance, detection of a performance error

may be used to shift performance strategy to a

more conservative speed/accuracy balance.

Based on the evidence reviewed below, we

develop the tentative hypothesis that one

unified function of the pMFC is performance

monitoring in relation to anticipated rewards.

The monitored signals may index the failure

(errors or negative feedback) or reduced pro-

bability (conflicts or decision uncertainty) of

obtaining such rewards, and as such signal

the need for increased control.

Performance Monitoring

Flexible adjustments of behavior and

reward-based association learning require

the continuous assessment of ongoing actions

and the outcomes of these actions. The abil-

ity to monitor and compare actual perform-

ance with internal goals and standards is

critical for optimizing behavior. We first

review evidence from primate, electrophysi-

ological, and functional neuroimaging studies

that points toward the importance of pMFC

areas (Fig. 1A) in monitoring unfavorable

performance outcomes, response errors, and

response conflicts, respectively. These con-

ditions have in common that they signal that

goals may not be achieved or rewards may

not be obtained unless the level of cognitive

control is subsequently increased.

Although the pMFC can also be activated

by positive events (such as rewards) (1, 2),

we focus here on negative events and their

consequences. Because errors and conflicts

are intrinsically negative, and because unfa-

vorable outcomes are typically more conse-

quential for the regulation of cognitive

control than are favorable outcomes, our

review focuses on the role of the pMFC in

monitoring negative events.

Monitoring unfavorable outcomes. Elec-

trophysiological recordings in nonhuman

primates implicate the pMFC in monitoring

performance outcomes. Distinct neuron pop-

ulations in the pMFC, particularly in the

supplementary eye fields and the rostral

cingulate motor area (CMAr), are sensitive

to reward expectancy and reward delivery

(1, 3, 4). In addition, CMAr neurons exhibit

sensitivity to unexpected reductions in re-

ward (5). Likewise, specific groups of

neurons in the depth of the cingulate sulcus

(area 24c) react to response errors and to

unexpected omissions of rewards (5). These

findings are consistent with a role for these

neuronal populations in comparing expected

and actual outcomes.
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