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A discrete finite image I is a function assigning colors to a finite, rectangular array of discrete pixels. A dipole
is a triple, ((dR , dC), a, b), where dR and dC are vertical and horizontal, integer-valued displacements and a
and b are colors. For any such dipole, DI((dR , dC), a, b) gives the number of pixel pairs ((r1 , c1), (r2 , c2))
of I such that I@r1 , c1# 5 a, I@r2 , c2# 5 b and (r2 , c2) 2 (r1 , c1) 5 (dR , dC). The function DI is called the
dipole histogram of I. The information directly encoded by the image I is purely locational, in the sense that
I assigns colors to locations in space. By contrast, the information directly encoded by DI is purely relational,
in the sense that DI registers only the frequencies with which pairs of intensities stand in various spatial re-
lations. Previously we showed that any discrete, finite image I is uniquely determined by DI [Vision Res. 40,
485 (2000)]. The visual relevance of dipole histogram representations is questionable, however, for at least
two reasons: (1) Even when an image viewed by the eye nominally contains only a small number of discrete
color values, photon noise and the random nature of photon absorption in photoreceptors imply that the effec-
tive neural image will contain a far greater (and unknown) range of values, and (2) DI is generally of much
greater cardinality than I. First we introduce ‘‘soft’’ dipole representations, which forgo the perfect registra-
tion of intensity implicit in the definition of DI , and show that such soft representations uniquely determine
the images to which they correspond; then we demonstrate that there exists a relatively small dipole repre-
sentation of any image. Specifically, we prove that for any discrete finite image I with N . 1 pixels, there
always exists a restriction Q of DI (with the domain of Q dependent on I) of cardinality at most N 2 1 suffi-
cient to uniquely determine I, provided that one also knows N; thus there always exists a purely relational
representation of I whose order of complexity is no greater than that of I itself. © 2002 Optical Society of
America

OCIS codes: 100.2960, 100.5010, 330.7310, 330.5000.
1. INTRODUCTION
A discrete finite image I@r, c# is a function that assigns
real numbers (representing colors) to a finite, rectangular
array of ordered pairs (r, c) of integers (representing spa-
tial locations). Thus I directly codes purely locational in-
formation. For many purposes, however, locational infor-
mation is of little direct visual utility. For example,
locational information is irrelevant for identifying a face
or recognizing an object or assessing a property of some
surface texture. More important for such purposes are
the spatial relationships between intensities in the visual
field. Indeed, it is commonly found that neurons (in in-
ferotemporal cortex) subserving such purposes have large
receptive fields and are typically quite tolerant to large
changes of location of stimuli within their receptive
fields.1–4

Here we explore some basic properties of relational im-
age representations. This is a class of image-coding
schemes that may prove useful for pattern recognition
and other visual judgments that depend primarily on sen-
sitivity to internal relationships between components of a
pattern. Moreover, the representations in this class lend
themselves gracefully to size-invariant assessments as
well. (Face-selective neurons in monkey STS are remark-
ably size invariant.5,6 Indeed, in their study of 33 such
face-selective neurons, Rolls and Baylis6 found that the
median size change tolerated with a response of greater
than half the maximal response was 12 times.)
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A basic example of a relational representation is the di-
pole histogram DI of an image I. A dipole is a triple,
((dR , dC), a, b), where dR and dC are horizontal and
vertical, integer-valued displacements and a and b are
real numbers (color values). In any such dipole, a is
called the initial value, and b is called the terminal value.
For any such dipole, DI((dR , dC), a, b) gives the num-
ber of pixel pairs ((r1 , c1), ~r2 , c2!) of I such that
I@r1 , c1# 5 a, I@r2 , c2# 5 b, and (r2 , c2) 2 (r1 , c1)
5 (dR , dC). (Thus DI has the obligate symmetry,
DI((dR , dC), a, b) 5 DI((2dR , 2dC), b, a).) Note
that the information directly encoded by DI is exclusively
relational.

The dipole histogram of an image and the related no-
tion of the probabilistic, second-order statistics of a sto-
chastic image have played an important role in past dis-
cussions of texture segregation.7–17 However, dipoles
have not played an important role in recent computa-
tional models of texture processing.18–22

It is easy to see how DI can be constructed from I. Al-
though it may not be quite so obvious, I can also be
uniquely constructed from DI .23 Thus any image I can
be represented either in terms of purely locational infor-
mation or in terms of the purely relational information
embodied in DI .

The purely relational nature of the information directly
coded in the dipole histogram makes it an intriguing al-
ternative image representation. However, there are ob-
2002 Optical Society of America
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vious reasons to suppose that the visual system does not
in fact construct dipole histograms of its input. First, the
dipole histogram is typically a much larger object than
the corresponding image—that is, the cardinality of DI
tends to be much greater than that of the original input
image I (especially in the case in which most of I ’s pixel
values are distinct). Second, although we can imagine
artificial images comprising only a few different discrete
colors, the images encountered in daily life typically com-
prise continuously varying colors, almost none of which
are likely to be identical between different pixels within a
given image. Moreover, even when an image viewed by
the eye nominally contains only a small number of dis-
crete color values, photon noise and the random nature of
photon absorption in photoreceptors imply that the effec-
tive neural image will contain a far greater (and un-
known) range of values. To compute the dipole histo-
gram of such an image requires a level of precision in
intensity resolution that we have no reason to think is
achieved by the visual system.

In this paper, after basic definitions in Section 2, we
shall begin in Section 3 by generalizing the notion of the
dipole histogram of an image I to that of a ‘‘soft’’ dipole
representation of I. Soft dipole representations relax the
requirement (implicit in the definition of the dipole histo-
gram) that intensities within an image be precisely regis-
tered, allowing instead a ‘‘softened’’ or ‘‘graded’’ registra-
tion of intensity. In this respect, at least, soft dipole
representations may claim greater biological plausibility
than dipole histograms. Moreover, as we shall show, pre-
cise registration of image intensity can be sacrificed with
no loss of information: A soft dipole representation of a
given input image uniquely determines that image.

After introducing soft dipole representations, and
showing that they uniquely determine the images to
which they correspond, we return in Section 4 to (nonsoft)
dipole histograms. Our purpose in Section 4 is to show
that relational representations need not be exorbitantly
large compared with the images to which they corre-
spond. Specifically, we show that for any image I (of any
dimension) comprising N . 1 pixels, there always exists
a restriction (term defined in Subsection 4.A) QI of DI to a
subset HI of at most N 2 1 dipoles with the following
property: For any image J comprising N pixels, if
DJ(x) 5 QI(x) for all dipoles x P HI , then J 5 I. In
other words, the restriction QI uniquely determines I
(provided that one knows the number of pixels in I).

In summary, our aim is twofold: First, we will show
that the notion of the dipole histogram can be generalized
to a family of representations that do not require precise
registration of intensity; second, we will show that rela-
tional representations (specifically, dipole representa-
tions) need not be huge in comparison with the images
they represent. We hope that these two results will
stimulate further research in this area.

2. ONE- AND TWO-DIMENSIONAL IMAGES
AND THEIR DIPOLE HISTOGRAMS
A. One-Dimensional Images
Let R 5 $0, 1 ,..., N 2 1%, for some integer N. Then, a
one-dimensional image is a function I:R → R. Elements
of R are called pixels, and for any pixel r, I@r# denotes the
value assigned by I to r.

A one-dimensional dipole is a triple, (d, a, b), with d a
nonnegative integer-valued displacement and a and b
real numbers. We say that a dipole (d, a, b) bridges a
pair (r1 , r2) of pixels in I if r2 2 r1 5 d, I@r1# 5 a, and
I@r2# 5 b. The dipole histogram DI assigns to each di-
pole x 5 (d, a, b) the number of distinct pairs in I
bridged by x. Thus, if DI(6, 1, 24.3) 5 16, then there
are 16 pixels r of I such that I@r# 5 1 and I@r 1 6#
5 24.3. We write Support(DI) for the set of all dipoles x
such that DI(x) . 0.

B. Two-Dimensional Images
Let R 5 $0, 1 ,..., N 2 1% and C 5 $0, 1 ,..., M 2 1% for
integers N and M. A two-dimensional image is a function
J:R 3 C → R, where R 3 C denotes the Cartesian prod-
uct of R and C. The elements of R 3 C are called pixels,
and J@r, c# denotes the value assigned by J to a given
pixel (r, c).

A two-dimensional dipole is a triple, (d, a, b), with dis-
placement d 5 (dR , dC) comprising a nonnegative,
integer-valued vertical displacement dR and a (possibly
negative) integer-valued, horizontal displacement dC .
(We need to allow either negative row or column displace-
ments in order to capture all varieties of two-dimensional
displacement, each in one direction; as a matter of con-
vention, we let column displacements vary in sign.)

As in the one-dimensional case, a and b are real num-
bers. We say that a dipole (d, a, b) bridges a pair
@(r1 , c1), (r2 , c2)# of pixels in J if d 5 (r2 , c2)
2 (r1 , c1), J@r1 , c1# 5 a and J@r2 , c2# 5 b. As in the
one-dimensional case, the dipole histogram DJ assigns
to each dipole x 5 (d, a, b) the number of distinct
pairs of pixels in J bridged by x, and we continue to
write Support(DJ) for the set of all dipoles x such that
DJ(x) . 0.

3. SOFT DIPOLE REPRESENTATIONS
One reason to question the biological relevance of dipole
histogram representations is the following: Even when
an image viewed by the eye nominally contains only a
small number of discrete color values, photon noise and
the random nature of photon absorption in photoreceptors
imply that the effective neural image will contain a far
greater (and unknown) range of values. In this section
we explore the possibility of relaxing the assumption im-
plicit in the definition of the dipole histogram that image
intensities are precisely registered by the visual system.

To take an example, let I be an image, d a displace-
ment, and a and b intensities. Then DI(d, a, b) gives
the total number of pixels r for which I@r# 5 a and I@r
1 d# 5 b. By contrast, let neighborhood(a) and neigh-
borhood(b) be the open intervals (a 2 1/2, a 1 1/2) and
(b 2 1/2, b 1 1/2), and consider the function SI(d, a, b)
giving the total number of pixels r such that I@r#
P neighborhood(a) while I@r 1 d# P neighborhood(b).
SI is an example of a soft dipole representation. As is
evident in its definition, SI embodies information similar
to that embodied by DI ; however, SI forgoes the precise
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registration of image intensities implicit in the definition
of DI . Nonetheless, as we show here, I is uniquely de-
termined by SI .

A. Soft Dipole Representations of One-Dimensional
Images
It will be convenient to obtain some basic results about
one-dimensional images and then extend them to higher-
dimensional cases. Accordingly, let G:R → R be a prob-
ability density function with mean 0. Then, for any one-
dimensional image I with N pixels, any a, b P R, and d
5 0, 1 ,..., N 2 1, define

SI~d, a, b! 5 (
r50

N212d

G~I@r# 2 a!G~I@r 1 d# 2 b!.

(1)

[Note that the sum in Eq. (1) ranges over all pixels r for
which I@r# and I@r 1 d# are both defined.]

Suppose, for example, that

G~v ! 5 H 1 if 2
1

2
, v ,

1

2

0 otherwise

. (2)

In this case, as discussed above, SI behaves as an
intensity-tolerant version of DI . The crucial difference
is as follows: DI(d, a, b) counts precisely those occur-
rences of pixels r for which I@r# 5 a and I@r 1 d# 5 b;
by contrast, SI does not require strict equality between
I@r# and a or between I@r 1 d# and b: for any given a
and b, SI(d, a, b) gives the total number of pixels r in
Dom(I) such that I@r# is within distance 1/2 of a and
I@r 1 d# is within distance 1/2 of b.

Another natural choice for G is a Gaussian density with
mean 0:

G~v ! 5
1

A2ps
exp 2~v2/2s 2!. (3)

With G given by Eq. (3), it is not as easy to give a precise
verbal characterization of SI(d, a, b) [as with G defined
by Eq. (2)]. It is clear, however, that as long as s is rela-
tively small in comparison with the range of pixel values
occurring in I, then SI(d, a, b) continues to reflect the
degree to which I tends to assign values near a to pixels r
while assigning values near b to pixels r 1 d.

The choices of G given in Eqs. (2) and (3) yield defini-
tions of SI similar in spirit to DI . However, there are
many choices of G for which this is not true. For ex-
ample, one might choose a bimodal (zero-mean) density G
with G(0) 5 0. Such a choice of G would yield an SI
largely insensitive to the information reflected by DI .
Specifically, SI(d, a, b) would be utterly uninfluenced by
occurrences of pixels r for which I@r# 5 a and I@r 1 d#
5 b—precisely the events that DI(d, a, b) counts.

However, regardless of the value that G assigns to 0, if
G is a density function with mean 0, then I is uniquely
determined by SI . Note, for example, that
E
2`

` E
2`

`

SI~d, a, b!adadb

5 (
r50

N212d E
2`

`

G~I@r# 2 a!adaE
2`

`

G~I@r 1 d# 2 b!db

5 (
r50

N212d

I@r#, (4)

implying that one way of retrieving I from SI is to take

E
2`

` E
2`

`

@SI~N 2 1 2 d, a, b! 2 SI~N 2 d, a, b!#a

3 dadb 5 (
r50

d

I@r# 2 (
r50

d21

I@r# 5 I@d#. (5)

The reader will note, however, that although SI
uniquely determines I, SI is uncountable in cardinality,
being continuous in each of a and b. In general, finite
approximations of SI will correspond only to approxima-
tions of I.

B. Soft Dipole Representations of Two-Dimensional
Images
Let I be a two-dimensional image with N rows and M col-
umns. Then [by analogy to Eq. (1)] define

SI(~dr , dc!, a, b) 5 (
r50

N212dr

(
c 5 0

M212dc

G~I@r, c# 2 a!

3 G~I@r 1 dr , c 1 dc# 2 b!. (6)

Note that in Eq. (6), dr is constrained to be in the range
$0, 1 ,..., N 2 1%, while dc is allowed to take all values in
$1 2 M, 2 2 M ,..., 21, 0, 1 ,..., M 2 1%.

Let J be the one-dimensional image obtained by concat-
enating the successive rows of I. Specifically,

J@rM 1 c# 5 I@r, c#,

r 5 0, 1 , ..., N 2 1,

c 5 0, 1 , ..., M 2 1. (7)

Note, then, that any dipole ((dr , dc), a, b) of I corre-
sponds uniquely to the dipole (drM 1 dc , a, b) of J.
Moreover, for any dipole (d, a, b) of J, there exist at
most two dipoles of I that correspond to (d, a, b). If
they both exist, these two dipoles are ((dr , dc), a, b) and
((dr 1 1, dc 2 M), a, b), where dr is the greatest inte-
ger such that drM < d and dc 5 d 2 drM. If either dc
5 0, or dr 5 N 2 1, then ((dr 1 1, dc 2 M), a, b) will
be undefined, in which case only the dipole
((dr , dc), a, b) of I will correspond to dipole (d, a, b) of
J. In this case, reflection on Eqs. (6) and (1) shows that

SJ~d, a, b! 5 SI(~drM, dc!, a, b), (8)

whereas otherwise,

SJ~d, a, b! 5 SI(~drM, dc!, a, b)

1 SI(~~dr 1 1 !M, dc 2 M), a, b!.

(9)

Thus SI uniquely determines SJ . Equation (5) thus im-
plies that J is uniquely determined by SI . In addition,
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we can infer the number M of columns in I by surveying
Support(SI): Specifically, M is equal to 1 plus the maxi-
mum column displacement in any dipole in Support(SI).
This final item of information extracted from SI makes
possible the construction of I. We need only assign the
first M pixel values of J to the first row of I, the second M
pixel values of J to the second row of I, etc.

This shows that any two-dimensional image I is
uniquely determined by the corresponding soft dipole rep-
resentation SI . Moreover, it should be clear that this ar-
gument generalizes straightforwardly to images of any di-
mension.

C. Possible Roles of Soft Dipole Representations in
Visual Processing
Equation (5) shows that soft dipole representations pre-
serve complete information about the input image I even
though they sacrifice precise registration of image inten-
sity. However, for any given displacement d, SI(d, a, b)
varies continuously over all a, b P R. Moreover, the
method used in Eq. (5) to reconstruct I from SI makes use
of the entire continuum of values SI(d, a, b), d
5 0, 1 ,..., N 2 1, and a, b P R. This might be taken to
suggest that infinitely many neurons would be required to
fully encode the information in I (even though I itself com-
prises only N 1 1 pixels).

Several comments are in order. First (and most impor-
tant), it is unlikely that visual mechanisms using soft di-
pole representations would require those representations
to preserve complete information about the input. Rec-
ognition of a face, for example, might well depend on the
extraction of only a portion of the relational information
inherent in the input image [e.g., only the values
SI(d, a, b) corresponding to a restricted set of crucially
informative dipoles, (d, a, b)].

Second, for natural choices of G [e.g., G given by Eq.
(3)], reflection on Eq. (1) suggests that for any given dis-
placement d, the function SI(d, a, b) will vary slowly in
each of the arguments a and b. For example, if G is a
Gaussian function, we can expect SI(d, a, b) to be low-
pass filtered in each of a and b and hence band limited.
In this case, however, it seems likely that nearly all the
information in I may be preserved by a relatively low-
dimensional representation of SI .

This issue remains to be explored in detail. We shall,
however, address a closely related question in the next
section.

4. SMALL DIPOLE REPRESENTATIONS
Recall that any function is a set of ordered pairs. This is
true in particular of DI although each individual element
of DI is rather complicated: An element of DI is an or-
dered pair (x, DI(x)), where x 5 ((dR , dC), a, b) is a
dipole and DI(x) is the number of occurrences of x in I.
We call any subset Q # DI a dipole representation of I if
the following condition holds: For any image J, if J has
the same number of pixels as I, and Q # DJ , then J
5 I. In this case, we shall sometimes (equivalently) say

that Q uniquely determines I.
The cardinality of any finite set is simply the number of

elements in that set. Thus, for a dipole representation Q
of some finite image I, the cardinality of Q (denoted uQu) is
the number of ordered pairs (x, DI(x)) in Q. Note, how-
ever, that a given dipole x can occur in at most one or-
dered pair of Q; thus uQu gives the number of dipoles on
which Q is defined.

For any image I, the dipole histogram DI is itself a di-
pole representation of I.23 However, DI is typically
greater in cardinality than the original image I. For ex-
ample, consider an image I with N rows by M columns of
pixels that assigns a different color to each pixel. In this
special case, every dipole occurring in I differs from every
other dipole in either its initial or its terminal value. If
we limit redundancy in DI by allowing only displacements
d 5 (dR , dC) such that dR > 0 and dC > 0 whenever
dR 5 0, then each pair of (possibly identical) pixel loca-
tions in I corresponds to a single type of dipole of I. Thus
the set of dipoles over which DI is nonzero is of cardinal-
ity Npixels(Npixels 1 1)/2 for Npixels 5 NM; and for each di-
pole ((dR , dC), a, b) in this set, DI((dR , dC), a, b)
5 1.

Our purpose in this section is to show that for any dis-
crete, finite image I comprising N . 1 pixels there always
exists a dipole representation of I of cardinality at most
N 2 1 (provided that one also knows the number of pixels
in I). The proof we offer is constructive; that is, we show
how to produce such a representation for any given image
I. The representation we construct is not necessarily the
smallest that can be obtained (though in some cases it is).
Moreover, we make no claim that the particular represen-
tation we derive is biologically plausible or useful. Our
proof merely establishes an upper bound on the size of a
minimal representation.

A. Proper Subsets of DI That Uniquely Determine I
Chubb and Yellott23 showed that any one-dimensional im-
age I is uniquely determined by DI (and extended this re-
sult to images of arbitrary dimensionality). We include a
simple proof of this fact (in the one-dimensional case) in
Appendix A. However, it often turns out that DI is highly
redundant: We can usually find proper subsets of DI
that uniquely determine I.

Let H be a subset of Support(DI), and define Q:H
→ R by setting Q(x) 5 DI(x) for any dipole x P H.
The subset Q of DI is called the restriction of DI to H.
For a given image I, there often exist proper subsets of DI
that suffice to determine all the pixel values of I. In
other words, it often turns out that DI is redundant.

To take an example, let I be a one-dimensional image
all of whose pixels are assigned distinct values. It is easy
to see that I will be uniquely determined by the restric-
tion Q of DI to the set H of dipoles (d, a, b) such that
d 5 1. There will exist in H a unique dipole (1, a1 , b1)
such that a1 appears as the terminal value in none of the
other dipoles of H. It is easy to see that I@1# 5 a1 , and
that I@2# 5 b1 . Moreover, there will be a unique dipole
(1, a2 , b2) P H such that a2 5 b1 . Clearly, I@3#
5 b2 , and so forth, until all of I’s pixel values are deter-
mined. Of course, we must also be given the information
that I has N pixels; otherwise, we cannot rule out the pos-
sibility that some of I’s dipoles with displacement 1 are
missing from H.
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To take another simple example, suppose all of I’s pix-
els take the same value, g. In this case, Support(DI)
comprises only the N dipoles, (0, g, g), (1, g, g) ,..., (N
2 1, g, g). However, DI is nonetheless highly redun-
dant. Indeed, I is uniquely determined by the restriction
Q of DI to the singleton $(0, g, g)%. The knowledge that
Q(0, g, g) 5 N in conjunction with the information that I
has N pixels tells us immediately that all of I’s pixels take
value g. In this case, then, the minimal dipole represen-
tation of I is smaller in cardinality than I itself.

In both of the examples we have considered, we ex-
ploited special properties of the given image I to extract a
restriction of DI sufficient to determine I. The main
point of this section is to show that special properties are
not required. A relatively small restriction of DI can al-
ways be derived that suffices to determine I. The proof
that we offer is constructive and addresses directly the
multidimensional case.

B. Multidimensional Images
Let NM , NM 2 1 ,..., N0 be natural numbers; and for i
5 M, M 2 1 ,..., 0, let Xi 5 $0, 1 ,..., Ni 2 1%. Then
call X 5 XM 3 XM21 3 ... 3 X0 the [(M 1 1)-dimen-
sional] pixel lattice with dimensions NM , NM21 ,..., N0
(where XM 3 XM21 3 ... 3 X0 denotes the Cartesian
product of sets XM , XM21 ,..., X0). Then any function
I:X → R is called an (M 1 1)-dimensional image. Any
vector x P X is called a pixel of I, and we write I@x# for
the value assigned to x by I.

An (M 1 1)-dimensional dipole is a triple, (d, a, b),
with initial and terminal values a, b P R and displace-
ment d 5 (dM , dM21 ,..., d0) comprising integer coordi-
nate values. We say that a dipole (d, a, b) bridges a
pair (x, y) of pixels in I if d 5 y 2 x, I@x# 5 a and I@ y#
5 b. As in the one-dimensional case, the dipole histo-
gram DI assigns to each dipole x 5 (d, a, b) the number
of distinct pairs of pixels in I bridged by x; we continue to
write Support(DI) for the set of all dipoles x such that
DI(x) . 0.

C. There Exists a Relatively Small Dipole
Representation of Any Image
The proof of the main result of this Subsection (Proposi-
tion 4.C.2) makes use of two functions, l and its inverse
p, which we now define. Note that the pixel lattice X
comprises

N 5 NMNM21 ...N0 (10)

pixels. We assign integers 0, 1 ,..., N 2 1 to the pixels in
X by setting

l@x# 5 xMS )
i50

M21

NiD 1 xM21S )
i50

M22

NiD
1 ... 1 x1N0 1 x0 (11)

for any pixel x 5 (xM , xM21 ,..., x0) P X.
For any pixels x, y P X, one quickly sees that l@ y#

> l@x# iff y lexicographically dominates x. It is also
clear that l is 121 from X onto $0, 1 ,..., N 2 1%, imply-
ing that the inverse function l21 is well defined. It will
be convenient to write p for l21; thus, for any n
P $0, 1 ,..., N 2 1%, p(n) is the nth pixel of X under lexi-
cographic ordering.

A few observations will facilitate the proof of Proposi-
tion 4.C.2.

1. Lemmas

1. For any x, y P X,

~a! If x 1 y P X, then l@x 1 y# 5 l@x# 1 l@ y#.
(12)

~b! If y 2 x P X, then l@ y 2 x# 5 l@ y# 2 l@x#.
(13)

To derive (a), note that the vector x 1 y will be an ele-
ment of X only if xi 1 yi < Ni 2 1, for i 5 0, 1 ,..., M.
In this case, the fact that Eq. (11) is linear in x implies
that l@x 1 y# 5 l@x# 1 l@ y#. The argument for (b) is
similar.

2. For any n P $0, 1 ,..., N 2 1%,

p@n# 2 p@0# 5 p@n# 5 p@N 2 1# 2 p@N 2 1 2 n#.
(14)

The left-hand equality follows directly from the fact that
p@0# 5 (0, 0 ,..., 0); to derive the right-hand equality,
note that y 5 p@N 2 1# 5 (NM 2 1, NM 2 1 2 1 ,..., N0)
and x 5 p@N 2 1 2 n# satisfy the conditions of Eq. (13)
above. Thus

p@N 2 1# 2 p@N 2 1 2 n#

5 p@l@p@N 2 1# 2 p@N 2 1 2 n###

5 p@l@p@N 2 1## 2 l@p@N 2 1 2 n###

5 p@N 2 1 2 @N 2 1 2 n##

5 p@n#. (15)

3. For any x, y P X,

~a! If l@x# 1 l@ y# . N 2 1, then x 1 y ¹ X. (16)

~b! If l@ y# 2 l@x# , 0, then y 2 x ¹ X. (17)

To see that (a) holds, derive the contrapositive: Suppose
that x 1 y P X. Then [by Eq. (12)] l@x# 1 l@ y# 5 l@x
1 y# < N 2 1. Similarly, to see that (b) holds, note that
if ( y 2 x) P X, then [by Eq. (13)] l@ y# 2 l@x# 5 l@ y
2 x# > 0.

We are now equipped to prove the main result of this
section.

2. Proposition
For some positive integer M, let I be an image on the pixel
lattice X with dimensions NM , NM21 ,..., M0 . Then
there exists a dipole representation of I of cardinality at
most N 2 1, where N 5 NMNM21 ...N0 .

Proof. For simplicity, suppose that N is even; that is,
suppose that N 5 2K for some integer K. Then let
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HI 5 5
~p@N 2 1#, I@p@0##, I@p@N 2 1## !,

~p@N 2 2#, I@p@0##, I@p@N 2 2## !, ~p@N 2 2#, I@p@1##, I@p@N 2 1## !,

~p@N 2 3#, I@p@0##, I@p@N 2 3## !, ~p@N 2 3#, I@p@2##, I@p@N 2 1## !,

] ]

~p@K#, I@p@0##, I@p@K## !, ~p@K#, I@p@K 2 1##, I@p@N 2 1## !

6 . (18)
Consider then some x P X for which 0 , l@x# , j, and
let y 5 x 1 p@N 2 1 2 j#. It is possible that y may not
be a pixel in X. However, by Eq. (12), if y P X, then
l@ y# 5 l@x# 1 N 2 1 2 j . N 2 1 2 j. In this case,
the induction hypothesis implies that J@x# 5 I@x# and
J@ y# 5 I@ y#. Thus, as asserted at the outset, there exist
only two pairs of pixels x1 , y1 P X and x2 , y2 P X sepa-
rated by displacement p@N 2 1 2 j# for which the induc-
tion hypothesis does not directly suffice to determine that
J@x# 5 I@x# and J@ y# 5 I@ y#. The first such pair has
x1 5 p@0# and y1 5 p@N 2 1 2 j# (here we do not yet
know whether J@ y1# 5 I@ y1#); the second has x2 5 p@ j#
and y2 5 p@N 2 1# (here we do not yet know whether
J@x2# 5 I@x2#).

However, as we now show, because QI , DJ , we are
able to infer that indeed J@p@ j## 5 I@p@ j## and J@p@N
2 1 2 j## 5 I@p@N 2 1 2 j##. Specifically, the crucial
information is provided by the values DJ(p@N 2 1
2 j#, I@p@0##, I@p@N 2 1 2 j##) and DJ(p@N 2 1
2 j#, I@p@ j##, I@p@N 2 1##).

For any dipole j 5 (d, a, b), it will be convenient to
let IndCnt(j) be the number of pairs x, y of pixels in X
such that 0 , l@x# , j, y 5 x 1 d, J@x# 5 a and J@ y#
5 b.

Because QI , DJ , we know that DJ(p@N 2 1
2 j#, I@p@0##, I@p@N 2 1 2 j##) 5 DI(p@N 2 1 2 j#,
I@p@0##, I@p@N 2 1 2 j##) and DJ(p@N 2 1 2 j#,
I@p@ j##, I@p@N 2 1##) 5 DI(p@N 2 1 2 j#, I@p@ j##,
I@p@N 2 1##).

If the two dipoles (p@N 2 1 2 j#, I@p@0##, I@p@N 2 1
2 j##) and (p@N 2 1 2 j#, I@p@ j##, I@p@N 2 1##) are
identically equal to a single dipole j, then the set HI is
constructed to contain only one dipole with displacement
p@N 2 1 2 j#, namely, j. Otherwise, HI will contain two
dipoles, j1 and j2 , with displacement p@N 2 1 2 j#, one
of which is identical to (p@N 2 1 2 j#, I@p@0##, I@p@N
2 1 2 j##) and the other to (p@N 2 1 2 j#,
I@p@ j##, I@p@N 2 1##). Note that in this case we must
have either I@p@0## Þ I@p@ j## or else I@p@N 2 1
2 j## Þ I@N 2 1#.

If HI contains only one dipole, j, with displacement
p@N 2 1 2 j#, then we must have (p@N 2 1 2 j# ,
I @p@0## , I@p@N 2 1 2 j##) 5 (p@N 2 1 2 j# , I @p@ j##,
I@p@N 2 1##) 5 j, implying that QI(j) is greater by 2
than IndCnt(j). Similarly, if HI contains two distinct di-
poles j1 and j2 with displacement p@N 2 1 2 j#, then for
each of i 5 1 and 2, QI(j i) must be greater by 1 than
IndCnt(j i).

We now proceed to show that J@p@N 2 1 2 j##
5 I@p@N 2 1 2 j## and J@p@ j## 5 I@p@ j##. Suppose
first that HI contains two distinct dipoles with displace-
ment p@N 2 1 2 j#: j1 5 (p@N 2 1 2 j#, a1 , b1) and
(In Eq. (18) we take the liberty of writing p@k# sometimes
to denote the pixel x for which l@x# 5 k and at other
times to denote the displacement d whose offsets are
equal to the coordinate values of x.) Note first that uHIu
is at most N 2 1. uHIu can be less than N 2 1 if dipoles
(p@N 2 1 2 j#, I@p@0##, I@p@N 2 1 2 j##) and (p@N
2 1 2 j#, I@p@ j##, I@p@N 2 1##) happen to be identical,
for one or more j (i.e., if I@p@0## 5 I@p@ j## and I@p@N
2 j 2 1## 5 I@p@N 2 1##). We want to show that the
restriction QI of DI to HI is a dipole representation of I.
Accordingly, let J be an image with N pixels, and suppose
that QI , DJ .

Immediately we note that the dimensionality of J is de-
termined by QI : Given that the total number of pixels in
J is N, the fact that the displacement of the first dipole in
HI is (NM 2 1, NM21 2 1 ,..., N0 2 1) implies that J has
dimensions NM , NM21 ,..., N0 .

J’s dimensionality implies in turn that J has only one
dipole with displacement p@N 2 1# 5 (NM 2 1, NM21
2 1 ,..., N0 2 1): the dipole that bridges pixels (0,
0 ,..., 0) and (NM 2 1, NM21 2 1 ,..., N0 2 1). Thus,
from the fact that DJ(p@N 2 1#, I@p@0##, I@p@N 2 1##)
5 QI(p@N 2 1#, I@p@0##, I@p@N 2 1##), we infer that
J@p@0## 5 I@p@0## and J@p@N 2 1## 5 I@p@N 2 1##.

We proceed by induction (on j). Suppose that for some
integer 0 , j , K, J@p@i## 5 I@p@i## for i 5 0, 1 ,..., j
2 1 and also for i 5 N 2 1, N 2 2 ,..., N 2 j. We shall
show that in this case, it is also true that J@p@ j##
5 I@p@ j## and J@p@N 2 1 2 j## 5 I@p@N 2 1 2 j##.

The argument begins with a demonstration that for al-
most all pairs x, y of pixels in X separated by displace-
ment p@N 2 1 2 j#, both of J@x# and J@ y# are deter-
mined by the induction hypothesis. Specifically, we shall
show that there are only two pairs of pixels x1 , y1 and x2 ,
y2 separated by displacement p@N 2 1 2 j# for which
this is not true: The first such pair has x1 5 p@0# and
y1 5 p@N 2 1 2 j# (y1 is undetermined); the second such
pair has x2 5 p@ j# and y2 5 p@N 2 1# (x2 is undeter-
mined). Note that for each of these two pixel pairs Eq.
(14) above implies that the displacement from x to y is
p@N 2 1 2 j#.

A necessary (but insufficient) condition for pixels x and
y to be bridged by a dipole with displacement p@N 2 1
2 j# is that

~ i! l@x# < j and ~ ii! l@ y# > N 2 1 2 j. (19)

Argument: If (i) is false (i.e., if l@x# . j), then l@x#
1 N 2 1 2 j . N 2 1, in which case Eq. (16) above im-
plies that the vector x 1 p@N 2 1 2 j# is not in the pixel
lattice X. Similarly, if (ii) is false, then l@ y# , N 2 1
2 j, in which case Eq. (17) implies that y 2 p@N 2 1
2 j# is not in X.
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j2 5 (p@N 2 1 2 j#, a2 , b2). In this case, as observed
above, for each of i 5 1 and 2, DJ(j i) 5 QI(j i) is greater
by one than IndCnt(j i). We thus infer that the dipole of
J bridging pixel pair (p@0#, p@N 2 1 2 j#) is equal to
one of j1 or j2 and the dipole of J bridging (p@ j#, p@N
2 1#) is equal to the other. Since j1 Þ j2 , we infer ei-
ther that a1 Þ a2 or else that b1 Þ b2 . We also know
that one of a1 or a2 is equal to I@p@0## and one of b1 or b2
is equal to I@p@N 2 1##. Suppose that I@p@0## 5 a1
Þ a2 . Then we infer that J@p@ j## 5 a2 and J@p@N
2 1 2 j## 5 b1 ; however, the construction of HI requires
that a2 5 I@p@ j## and b1 5 I@p@N 2 1 2 j##, implying
that J@p@ j## 5 I@p@ j## and J@p@N 2 1 2 j## 5 I@p@N
2 1 2 j##. Similarly, in the case in which I@p@N 2 1##
5 b1 Þ b2 , we find that J@p@ j## 5 I@p@ j## and J@p@N
2 1 2 j## 5 I@p@N 2 1 2 j##.

If HI contains only a single dipole j 5 @p@N 2 1
2 j#,a,b#, then (as argued above) QI’s construction
ensures that QI(j) is greater by two than IndCnt(j).
Since the only pixel pairs with displacement p@N 2 1
2 j# that remain unaccounted for are (p@0#, p@N 2 1
2 j#) and (p@ j#, p@N 2 1#), we infer that x1 5 x j11
5 j, implying that J@p@ j## 5 J@p@0## 5 a 5 I@p@ j##
5 I@p@0## and J@p@N 2 1 2 j## 5 J@p@N 2 1## 5 b
5 I@p@N 2 1 2 j## 5 I@p@N 2 1##.

This completes the proof in the case in which N is as-
sumed to be even. No important complexities arise if N
is odd. j

5. FINAL REMARKS
Visual processes such as recognition of an object or face
are concerned primarily with the spatial relations be-
tween intensities composing the input image. The dipole
histogram of an image encodes purely relational informa-
tion about that image. It is also true that the dipole his-
togram of any discrete, finite image uniquely determines
that image.23 These considerations make the dipole his-
togram a promising way of representing an image, at
least for purposes of recognition.

However, it does not seem likely that human vision en-
codes its input images in terms of their dipole histograms.
First, the definition of a dipole histogram implicitly re-
quires an unrealistic level of precision in registration of
image intensity, point by point throughout the stimulus
field. Second, the dipole histogram of a given image is
typically of much larger cardinality than the image itself.

In this paper we have attempted to address these two
difficulties in order to explore the possibility that some
form of purely relational image representation might sub-
serve recognition processes in human vision. In Section
3 we introduced soft dipole representations. These rep-
resentations are similar to dipole histograms; however,
they forgo the precise registration of image intensity re-
quired by the dipole histogram. We also showed that soft
dipole representations uniquely determine the images to
which they correspond.

It should be noted, however, that the soft dipole repre-
sentations we have considered here tend to be large. An
important open question (raised in Subsection 3.C) is the
following: Do there exist small soft dipole representa-
tions that suffice to uniquely determine the images to
which they correspond?

That there do, in fact, exist small dipole representa-
tions was demonstrated in Section 4. In that section we
provided a method for constructing a purely relational
representation QI of any discrete, finite image I with N
. 1 pixels, such that uQIu < N 2 1. Given the informa-

tion that (a) I has N pixels and (b) QI is a subset of DI (the
dipole histogram of I), one can uniquely determine the
pixel values of I. This result demonstrates that one can
always obtain a purely relational representation of a
given image that is no greater in order of complexity than
the original image.

It should be noted, however, that the construction we
have provided does not guarantee that the resulting rela-
tional representation will be minimal in cardinality.
There may well exist smaller subsets of DI that uniquely
determine I. For example, as discussed in Subsection
4.A, in the special case in which all of I’s pixels take the
same value, I is uniquely determined by a restriction
Q , DI for which uQu 5 1 (as usual, provided that one
knows the number of pixels in I). The method we have
described yields representations of cardinality at least
ceil(N/2), for ceil(N/2) the greatest integer less than or
equal to N/2.

Thus the following problem presents itself: Given an
arbitrary input image I, how can one find a dipole repre-
sentation of I of minimal cardinality? That is, is there a
general method for constructing a restriction Q of DI such
that (1) Q uniquely determines I and (2) uQu is minimal
over the set of all restrictions satisfying (1)?

We speculate that a solution to this problem may yield
interesting insights into the nature of visual coding.
Doner24 investigated the relationship between perceptual
properties of images I and the corresponding dipole histo-
grams DI . In particular, he examined the ways in which
various measures of dipole histogram entropy relate to
different sorts of pattern judgments. Although this idea
is enticing, we suspect that it may be important to focus
on the relationships between visual judgments and non-
redundant dipole representations.

To help clarify our intuitions we offer the following defi-
nition: For any discrete, finite image I, define the dipole
complexity of I as the minimum of uQu across all restric-
tions Q of DI that uniquely determine I.

What might the visual significance be (if any) of the di-
pole complexity of an image? We have already observed
that the dipole complexity of a one-dimensional image of
uniform color is 1. More generally, it seems reasonable to
suspect that images of low dipole complexity may turn out
to be structurally ‘‘simple’’ in some sense echoed by hu-
man pattern perception, whereas those of high dipole
complexity may turn out to be visually ‘‘complex.’’

The current paper shows that the dipole complexity of
any image I is less than or equal to uIu 2 1. At present,
however, the problem of how to determine the dipole com-
plexity of a given image remains unsolved.

APPENDIX A
In this appendix, for the sake of building intuition, we
supply a proof, previously presented,23 that any one-
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dimensional image is uniquely determined by its dipole
histogram. This is, of course, a corollary of Proposition
4.C.2. However, the following proof is simpler than that
of Proposition 4.C.2.

Proof. Let I be a one-dimensional image. It will be
convenient to write (a,b to indicate a sum ranging over all
pairs of pixel values of I. We use this notation to define

C11@d# 5 (
a,b

DI@d, a, b#ab

5 (
r50

N212d

I@r#I@r 1 d# (A1)

and

C10@d# 5 (
a,b

DI@d, a, b#a~1 2 b!

5 (
r50

N212d

I@r#~1 2 I@r 1 d# !. (A2)

Now, for k 5 0, 1 ,..., N 2 1, we have

C11@N 2 1 2 k# 1 C10@N 2 1 2 k#

5 (
r50

k

I@r#I@r 1 N 2 k# 1 (
r50

k

I@r#~1 2 I@r 1 N 2 k# !

5 (
r50

k

I@r#. (A3)

Thus, immediately,

I@0# 5 C11@N 2 1# 1 C10@N 2 1#, (A4)

and with I@0# in hand, we recursively obtain I@k# for k
5 1, 2 ,..., N 2 1 as follows:

I@k# 5 C11@N 2 1 2 k# 1 C10@N 2 1 2 k# 2 (
r50

k21

I@r#.

(A5)

Address correspondence to Charles Chubb at the location
on the title page or by e-mail, cfchubb@uci.edu; phone,
949-824-1481; or fax, 949-824-2517.
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