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1 Introduction

How can we explain the origins of our uniquely human compositional system of communi-
cation?1 Much of the recent work tackling this problem (e.g Bickerton 1990; Pinker & Bloom
1990; Newmeyer 1991; Hurford et al. 1998) explicitly attempts to relate models of our innate
linguistic endowment with neo-Darwinian evolutionary theory. These are essentially func-
tional stories, arguing that the central features of human language are genetically encoded
and have emerged over evolutionary time in response to natural selection pressures.

In this paper I put forward a new approach to understanding the origins of some of the
key ingredients in a syntactic system. I show, using a computational model, that composi-
tional syntax is an inevitable outcome of the dynamics of observationally learned communi-
cation systems. In a simulated population of individuals, language develops from a simple
idiosyncratic vocabulary with little expressive power, to a compositional system with high
expressivity, nouns and verbs, and word order expressing meaning distinctions.2 This hap-
pens without natural selection of learners — indeed, without any biological change at all —
or any notion of function being built into the system.

This approach does not deny the possibility that much of our linguistic ability may be
explained in terms of natural selection, but it does highlight the fact that biological evolution
is by no means the only powerful adaptive system at work in the origins of human language.

2 The origins of syntax

Pinker & Bloom (1990) argue that an analysis of the design features of human language,
and of syntax in particular, leads to the conclusion that the best way of understanding their
origins is as biological adaptations. The central questions that should be asked in their view
are:

1This research was carried out at the Collegium Budapest Institute for Advanced Study, and the Language
Evolution and Computation Research Unit in the Department of Linguistics at Edinburgh, funded by ESRC
grant R000236551. Much of the work described was carried out in collaboration with Mike Oliphant and Jim
Hurford. Some sections of this paper are available in an earlier technical report (Kirby 1998b) which also has an
appendix dealing with the model more formally.

2For parallel, and in certain ways contrasting, work, see Hurford (this volume).
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“Do the cognitive mechanisms underlying language show signs of design for
some function in the same way the anatomical structures of the eye show signs
of design for the purpose of vision? What are the engineering demands on a
system that must carry out such a function? And are the mechanisms of language
tailored to meet those demands?” (Pinker & Bloom 1990:712)

Pinker and Bloom claim that the features of grammar which they are interested in form
part of the innate endowment of humans and work together to make “communication of
propositional structures” possible. For example, the existence of linear order, phrase struc-
ture and major lexical categories together will allow a language user to “distinguish among
the argument positions that an entity assumes with respect to a predicate” (p. 713), suggest-
ing that their presence in human languages requires a biological/adaptationist explanation.

There have been many authors (see, e.g. Hurford 1998 for a recent review) who have
argued that it is useful to look at syntax as a product of natural selection — Newmeyer
(1991, 1992), for example, looks in detail at the features of the “Principles and Parameters”
model of syntax and gives them an evolutionary explanation. The reasons for this are clear,
as Pinker & Bloom (1990:707) point out: “Evolutionary theory offers clear criteria for when
a trait should be attributed to natural selection: complex design for some function, and the
absence of alternative processes capable of explaining such complexity. Human language
meets these criteria.”

I will show in this paper that, for at least some features of syntax, there are in fact “al-
ternative processes capable of explaining such complexity”, and that some of the qualitative
evolution of human language proceeded without natural selection. The kind of evolution
we will be looking at is not biological, but relies on a notion that languages themselves act as
complex adaptive systems (Hurford this volume; Worden this volume; Briscoe this volume;
Kirby 1998a; Kirby 1997b; Christiansen 1994; Deacon 1997; Kirby 1997a; Briscoe 1997; Gell-
Mann 1992).

The particular feature of syntax that will be explored in this light — and one which sub-
sumes many of Pinker and Bloom’s list — is compositionality. Cann (1993:4) gives the follow-
ing definition of the principle of compositionality, a universal of human language:

“The meaning of an expression is a monotonic function of the meaning of its
parts and the way they are put together.”

This definition makes it clear that, although compositionality is often taken to be a property
of semantics, it is actually a property of the system that links forms and meanings.

3 A computational approach

If we are to fully understand the ways in which a learned, culturally transmitted, sys-
tem such as language can evolve we need some sophisticated population models of learn-
ers. Simple theorising about the likely behaviour of complex adaptive systems is not good
enough. As Niyogi & Berwick (1997) point out, our intuitions about the evolution of even
simple dynamical systems are often wrong. Recently, many researchers have responded
to this problem by taking a computational perspective (for example, Hurford 1989; Hurford
1991; MacLennan 1991; Batali 1994; Oliphant 1996; Cangelosi & Parisi 1996; Steels 1996; Kirby
& Hurford 1997; Briscoe 1997; Briscoe this volume, Batali this volume, Hurford this volume).
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This paper follows on from this line of work, and also borrows from language learning
algorithms developed in computational linguistics (namely, Stolcke 1994) in order to see if
a significant portion of the evolution of syntax can proceed without biological change. In
many ways, this work is a logical extension of the work of Batali (1997) who simulates a
population of recurrent neural networks.

3.1 Features of a desirable model

In order for it to be a successful model of the cultural adaptation of language, the computa-
tional simulation has to have a set of key features. These set out our minimum requirements.
In general, we wish to make the model as simple as possible initially, and see if the complex
behaviour that we are looking for emerges without extra assumptions. The basic require-
ments are:

1. Individuals that observationally learn. In other words, all the knowledge in the popula-
tion is learned by individuals observing other’s behaviour. Following Oliphant (1997),
I use this term to contrast the model with ones which assume that learning proceeds
through explicit reinforcement.

2. A gradual turnover of members of the population over time. By ensuring that mem-
bers of the population are not “immortal” we can see that there is true historical/cultural
transmission of knowledge through the system.

3. No selection of individuals. In order to show that biological evolution is not a factor
in the results of the simulation, the “death” of members of the population should be
completely random and not related in any way to their success at communication.

4. Initial non-linguistic population. Those individuals that make up the initial population
should have no communication system at all. This means that any biases that emerge
in later states of the simulation are purely a product of the learners and the population
model.

The basic structure of the model is similar to that used by Oliphant (1997). Figure 1 shows
Oliphant’s diagram of how we can model populations of observational learners. The sim-
ulation maintains a population of individual learners which produce observable behaviour.
Occasionally, individuals will die and be removed from the population. These individuals
will be replaced with new individuals which learn from the body of observable behaviour
that the population has produced.

There is actually not much more than this to the computational model. All that remains
is to define what is meant by “observable behaviour”, and expand on how we model indi-
viduals that can produce and learn this behaviour.

3.2 Utterances

For a model of a population of communicating individuals, we clearly need something for
our individuals to talk about — in other words, we must provide the simulation with a set of
possible meanings. For the purposes of demonstrating emergent compositionality, it is impor-
tant that this set of meanings be structured in some way. If meanings were not decomposable
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Figure 1: A framework for modelling populations of observational learners (from Oliphant
1997).

then it would be impossible for there to be a compositional system for communicating those
meanings.

Each meaning in the simulation is a triple of attribute-value pairs. The three attributes
can be glossed as: Agent, Patient, and Predicate. The set of possible values is divided into two
classes, which can be glossed as: Objects and Actions. The Agent and Patient attributes can be
paired with only Objects, whilst the Predicate attribute can be paired with only Actions. The
Object class contains the values Mike, John, Mary, Tünde and Zoltan. The Action class contains
the values Loves, Knows, Hates, Likes and Finds. An example meaning in this scheme could
be: < Agent= Zoltan; Patient= Mary; Predicate= Knows >, which we can think of as being
equivalent to the English sentence “Zoltan knows Mary”. Essentially, the individuals’ mean-
ings are all about who did what to whom.3 For purely implementational reasons, meanings
with the same value for Agent as Patient are disallowed. This leads to a complete semantic
space made up of 100 possible meanings.

The individuals in the simulation communicate through a serial channel with discrete
symbols concatenated into a string. They have five of these basic symbols: a, b, c, d and e,
which can be thought of as phonetic gestures. In principle, there is no limit on the length of
an utterance, and the shortest possible utterance is one symbol long.

The observable behaviour in the model (which corresponds to the top part of Oliphant’s
diagram) is made up of pairs of meanings and symbol strings. This builds in an assumption
that the intended meanings of utterances are, at least some of the time, accessible to learners.

3I hope it will be clear that in choosing these particular attributes and values I am not making any claims about
what sort of things real individuals want to talk about. The names ‘Agent’, ‘Patient’ and ‘Predicate’ are purely
devices to help us think about these triples as meanings. They could equally well have been given numbers (as
indeed they are in the computational implementation of the model). The important feature of this semantics is
that it has inherent structure, albeit a very simple one.
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3.3 Individuals

In order to be able to produce utterances, the individuals in the model must have some way
of representing a communication system internally, and a way of inducing such a represen-
tation from experience. There are many ways in which we might implement this. In Batali
(1997), for example, the communication system is represented as a set of connection weights
in an artificial neural network, and these weights are learned using a standard algorithm.
The techniques used in the simulations described in this paper are described in detail in
Kirby (1998b), but a flavour of them will be given here.

3.3.1 Internal representation

Each individual represents its communication system as a context-free grammar.4 Impor-
tantly, the space of possible grammars is huge, and almost all of them are very un-language-
like. In other words, by choosing a grammatical framework like this, we are not building
in any unwanted inherent biases towards a compositionally structured system. Context free
grammars allow us to express a range of systems from completely non-compositional to
highly compositional.

3.3.2 Invention

The initial individuals in the population have no linguistic knowledge — at the start of the
simulation runs no-one is able to say anything. For anything to get off the ground there must
be a way for novel forms to be produced. It is assumed that occasionally individuals, even
though they have no normal way in which to express a certain meaning, will nonetheless
produce some invented string of symbols.

There are different ways in which this might be done. The simplest approach is to pro-
duce a completely random string of symbols. Another possibility, used by Hurford (this
volume), is to break down the meaning that is to be expressed into its atomic components,
and then try to “synthesise” a symbolic representation of the sum of those components, per-
haps by checking a lexicon for any matches to these atomic meanings. So, for example, if
an individual was trying to express< Agent= Zoltan; Patient= Mike; Predicate= Knows>,
then Hurford’s technique would check to see if there was a way to say “Zoltan”, “Mike” and
“Knows” in isolation, and put together an utterance by combining these parts.

However, Hurford’s (this volume) goal is not to model the emergence of compositional-
ity, so his approach may not be the best one to use in this simulation. Indeed, a synthetic ap-
proach to some extent is bound to build-in the central feature of compositionality — that the
meaning of the whole is composed of the meanings of its parts. Moreover, Wray (1998, this
volume) suggests that language evolution did not proceed through the synthesis of small
components into larger syntactic units, but rather that protolanguage consisted of holistic
(i.e. non-compositional) utterances for complex meanings.

Given this, it would seem sensible to opt for a random invention technique. How-
ever, this is rather unrealistic for some cases. For example, imagine that you, as an English
speaker, do not know the word for a new object that you have never seen before. It seems

4Actually, the grammars are probabilistic attribute grammars (Stolcke 1994). These are context-free grammars
which are enriched with statistical information and a simple semantics.
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implausible that, if you needed to express a meaning that mentioned this object somewhere
in it, you would utter a completely random string of phonetic gestures for the whole sentence.

Instead, whenever individuals invent a new form for a particular meaning, they do not
introduce new structure, but equally, they do not throw away structure that is already part
of the language they have acquired. The computational implementation of this invention
strategy is described in detail in Kirby (1998b).

3.3.3 Induction

Each individual in the simulation acquires a grammar based on experience of meaning-form
pairs produced by the rest of the population. The simulation uses a simplified version of
an algorithm developed by Stolcke (1994) for induction of context free grammars with se-
mantics. Full details of the methodology are given in Kirby (1998b). Essentially, the learning
process involves two steps:

1. Incorporation On receiving a meaning-form pair, the algorithm immediately builds a
grammatical model for that pair which makes no generalising assumptions about it.

2. Merging Having built a grammatical model of a single utterance, the algorithm seeks
to merge this model with the existing model for any previous utterances. Merging
involves making changes to the rules in the grammar in such a way that two or more
rules in the grammar become more similar to each other. The rational behind this
is that learning can be viewed as compression of training into a compact hypothesis
(Osborne & Briscoe 1997). If two rules in the grammar become identical, then one is
redundant and is deleted. The merging algorithm thus tends to produce “minimal
length” grammars for the observed utterances.

In practical terms, the way in which the induction algorithm seeks to merge the grammar
will introduce constraints on the space of possible grammars that the learners can acquire.
For example, the learners described in this paper cannot acquire recursive grammars. This
is not a serious concern, however, since the simple “who did what to whom” meanings that
they have to convey are not recursive anyway.

3.4 The population dynamic

Given a computational model of an individual we need to set out the ways in which a pop-
ulation of individuals interacts. The population in the simulations reported here is made up
of ten individuals at any one point in time, organised in a ring. In other words, each member
of the population has two neighbours. Figure 2 shows how this population is updated over
time.

Each cycle through the inner loop of figure 2, the speaker is “instructed” to produce a
randomly chosen meaning. Especially at the start of the simulation, the speaker may well
not be able to produce a string that corresponds to that meaning with the grammar that
it has internalised. At this point, one of two things may happen; either the speaker says
nothing, or the speaker may try and invent a new string (as described earlier). The rate at
which inventions are introduced can be easily controlled in the simulation. For the results
reported here, speakers produce inventions on average one time out of every fifty. If, on the
other hand, the speaker can produce a string which corresponds to the meaning, then it does
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Figure 2: The main loop used in the simulations.

so, although noise is simulated in the model by replacing this string with a random one one
time out of a thousand. The key points here are:

� Each individual learns only from utterances (form-meaning pairs) produced by its
neighbours.

� The makeup of the population changes over time.

� Individuals are replaced entirely at random.

� The probability that one individual will hear all forms for all the possible meanings is
vanishingly small.5

4 Results

This section looks in some detail at one particular run of the simulation described above.
The behaviour of the simulation is consistent from run to run, so a careful analysis of one
case is worthwhile.

The initial population is made up of ten individuals, all of which have no knowledge of
language — that is, they have empty grammars. The simulation loop described in figure 2 is
then initialised and left to run until the behaviour of the population stabilises (after several
thousand generations). Periodically, various measures of the population’s behaviour and
knowledge are taken:

5There are 100 different possible meanings, and a maximum of 100 utterances heard by each individual. Even
if an individual is lucky enough to hear 100 utterances in its lifetime, the chances that these will cover the entire
meaning space are 100!

100100 .
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Figure 3: The population average of size, meanings and coverage over 500,000 sentences,
where a “sentence” is an instruction to a speaker to produce a random meaning. The graph
is divided into three stages signifying major “phase changes” in the grammars of the popu-
lation.

1. Meanings The number of meanings that an individual can express (without inven-
tion).

2. Size The number of rules in an individual’s grammar.

3. Grammars The actual grammars of the individuals in the simulation can be directly
inspected, so that we can analyse any internal structure to the language that evolves in
the community.

A graph of the population average of meanings and size over a run of 5000 cycles through
the simulation is given in figure 3.

The graph has been partitioned into three stages between which the population appears
to make “phase transitions” into radically different types of behaviour. In particular, the
relationships between the two measures graphed and also the structure of the grammars
changes radically at these points. These stages are present in every run of the simulation,
although the timing of the transitions is variable.
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4.1 Stage I

In the first few cycles of the simulation run nothing much happens. No individual in the
population has any grammar, so they have no way of producing utterances. Each time an
individual is asked to produce a string for a particular randomly chosen meaning, they con-
sult their grammar and discover they have no way of producing a string so they say nothing.
Consequently the new individuals have no exemplars for acquisition and also end up with
empty grammars. Recall, however, that there are occasional random invention and noise
events. Whenever one of these occurs, the new individual has something to internalise: a
pairing of a randomly constructed string of symbols, and a randomly chosen meaning. Then,
if this individual is later called upon to produce an utterance with that meaning, that same
string of symbols will again appear in the input of a new learner.

This process of random invention and re-use leads to the situation that is stable through-
out the first emergent stage in the simulation. The population can express only a small
percentage of the meanings, using a small grammar. In fact, the grammars in this stage are
basically vocabulary lists, with each complex meaning being expressed as an arbitrary un-
analysed string of symbols. One such vocabulary list for a random individual picked out of
the population at this stage is shown below:

Meaning (glossed in English) String
John finds Mary aceabbceeeabeea
John finds Zoltan ceadaeeabbe
John hates Zoltan ecdceaabdda
Mary finds Zoltan adabeeb
Mary hates John ddadbbbbabeedaeee

Mary hates Tünde adababcccecadcbce
Mary hates Zoltan ceeaebeebcecabdee
Mary loves Tünde abacdddbe
Mike hates Mary adddbdcceaa
Zoltan hates John d
Zoltan hates Mike e

Notice that only 11 out of the full 100 meanings can be expressed by this individual, and
there is no consistent way in which the meanings are related to the strings. For example, John
hates Zoltan is expressed as ecdceaabdda while Zoltan hates John is expressed as the completely
unrelated string d. This complete lack of structure is confirmed when we look at a tree
diagram produced by using the grammar of this individual to parse the string aceabbceeeabeea
(figure 4).

4.2 Stage II

The second stage in the simulation results is marked by a sudden change in the population
measures. The number of meanings covered increases dramatically as does the size of the
grammar. More importantly, the number of meanings becomes greater than the number of
rules in the grammar. It is clear from this that the language is no longer simply behaving as
a list of unanalysed vocabulary items for complex meanings as it was in stage I.

In fact, the grammars at this stage are far more complex and byzantine than the earlier
ones. The details of what is going on in the language of the population at this stage are
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S <Agent=John, Patient=Mary,
   Predicate=Finds>

Figure 4: A stage I phrase structure tree showing the utterance aceabbceeeabeea meaning John
finds Mary. Note the complete flatness of the structure. The numbers attached to the nodes
are arbitrary category labels assigned by the learning algorithm.

hard to figure out. There are, however, a few points that should be noted. Firstly, there
are now syntactic categories that are intermediate between the sentence level and the level
of individual symbols. Importantly, some of these intermediate categories, or words, have
a semantics of their own. We can see this from the example tree in figure 5. Here, the
substring ce means John in the context of the string dceddd. This utterance is therefore partly
compositional.

4.3 Stage III

After a second abrupt change, the population switches into a third and final stage. This
stage appears to be completely stable, and in all runs no significant changes occur after this
point. The transition is marked by a sudden increase of the number of meanings that can be
produced to the maximum value and a drop in the size of the grammars.

A look at the behaviour of an individual in this stage reveals a marked contrast with the
typical behaviour earlier in the simulation. Some of the utterances of a typical individual are
shown below:
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        Predicate=Knows>

<Agent=    ,Patient=Tunde,

107 147<John>2 2

d d

c e d d

9 2 24

Figure 5: A stage II tree showing dceddd meaning John knows Tünde. The arrow shows how
the meaning of the whole is partially composed from the meaning of one of its lower con-
stituents.

Meaning (glossed in English) String
John finds Mary daecde
John finds Mike daadde

John finds Tünde daccde
. . . . . .

John hates Mary cdecde
John hates Mike cdadde

. . . . . .
Mary finds John dadeec

. . . . . .
Zoltan loves Tünde ceccca

This individual is able to express all 100 possible meanings because there is a regular corre-
spondence between meanings and forms. Each string is composed of three substrings which
correspond to the predicate, the patient, and the agent, in that order. The table below and
the example tree in figure 6 make this clearer.
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S <Agent=    ,Patient=    ,Predicate=    >

66 62 62<Loves> <John><Mary>

2 3 3 2 4 3

c e e c d e

Figure 6: A stage III tree showing ceecde meaning John loves Mary.

Meaning String
John de
Mary ec
Mike ad

Tünde cc
Zoltan ca
Finds da
Hates cd
Knows ee
Likes ae
Loves ce

Not only is this language completely compositional, but it also groups all the objects
(Mary, Zoltan, Mike, Tünde and John) under one syntactic category (62) and all the actions
(Likes, Loves, Knows, Finds and Hates) under a second category (66). In other words, this
language encodes a classic noun/verb distinction syntactically.

The language is a VOS language in that the verb is the first word in the sentence, and the
semantic roles of the two following nouns is determined by word order such that the first
noun is the patient and the second is the agent. The emergent ordering differs from run to
run, but the general pattern is the same: a noun/verb distinction encoded in the lexicon with
the agent/patient distinction encoded by word order. 6

4.4 Summary of the results

What we have seen in this run, and in every run of the simulation that has been attempted,
is the emergence of simple, yet language-like, syntax from randomness in a population that

6Although the result of this run is full compositionality, in that the sentence rule does not add any atomic
semantic content, this is not always the case. Occasionally, one of the atomic meanings does not becomelexicalised
as a noun or a verb, and an idiosyncratic sentence rule is used to express meanings that include the missing word.
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is not constrained to learn only a syntactic language.
The communication system of the population that quickly emerges from nothing is an

impoverished, idiosyncratic vocabulary of one-word utterances — in fact, nothing more
than an inventory of calls expressing unanalysed meanings. This system is passed on only
“culturally” through observational learning by new individuals, and there is nothing else
inherited by later generations from earlier ones.

After many generations, the system that is used to express meanings balloons in com-
plexity. Utterances are no longer unanalysed strings of symbols. They are made up of com-
mon chunks of several symbols. Some of these chunks even have meanings of their own,
although they are not regularly used to signify these meanings in a larger context. The lan-
guage of the population now goes through radical and unpredictable changes over time as
the range of meanings that are readily expressible changes wildly. The language appears to
be brittle in some way and liable to break and lose its expressive power suddenly.

At some point, all this changes, and the population converges on a simple system, a syn-
tactic system. Now, every sentence is made up of nouns and verbs (drawn from a concise
lexicon lacking synonymy and homonymy) in a fixed order which encodes meaning distinc-
tions compositionally, and every possible meaning can be expressed.

5 Why does this model work?

The individuals in the simulation simply observe each others’ behaviour and learn from
it, occasionally inventing, at random, new behaviours of their own. From this apparent
randomness, organisation emerges. Given that so little is built into the simulation, why is a
compositional syntax inevitable?

To answer this question, we need to look at how languages persist over time in the pop-
ulation. Language exists is two forms, both in reality and in the simulation (Chomsky 1986;
Hurford 1987; Kirby 1998a):

I-language This is (internal) language as represented in the brains of the population. It is
the language user’s knowledge of language. In the simulation, the I-language of an
individual is completely described by its grammar.

E-language This is the (external) language that exists as utterances in the arena of use (Hur-
ford 1987). In the simulation, we can describe E-language by listing the form-meaning
pairs of an individual.

These two types of language influence each other in profound ways. E-language is a
product of the I-language of speakers. However, the I-language of language learners is a
product of the E-language that they have access to (see figure 7). A particular I-language or
E-language can fail to persist over time because the processes that map from one to the other
and back again are not necessarily preservative.

We can divide up I-language into units — replicators — that may or may not persist
through time. The persistence of an I-language over time is related to the success of the
replicators that make up that language. In other words, the languages which are more easily
transmitted from generation to generation will persist.

Within a population, certain replicators actually compete for survival. That is, the success
of one must be measured relative to the success of others in the population at that time. These
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Figure 7: The cycle of language acquisition and use, which maps I-language objects to E-
language objects and vice versa. These transformations act as bottlenecks for the information
flowing through the system. For a particular feature of language to survive over time, it must
be faithfully preserved through these mappings.

competing replicators are those rules which potentially express the same meaning. If there
are two ways of saying John loves Mary, then on a particular exposure to this meaning, the
learner can obviously only hear one of them. Therefore, on one exposure, only one of the
rules (or, more properly, set of rules) that can be used to express John loves Mary has a chance
of being induced by the learner.

At face value, it would seem that the two competing rules (or rule-sets) will have an
equal chance of being the one chosen for producing the meaning, so the replicative success
of all rules in a language should be equal. This would be true if each rule only ever expressed
one meaning. However, if one rule can be used to express more meanings than another, then,
all other things being equal, that rule will have a greater chance of being expressed in the
E-language input to the learner. In this case, the more general rule is the better replicator.

For a more concrete example, consider a situation where, in the population of I-languages,
there are two competing rules. One is a rule that expresses John loves Mary as an unanalysed
string of symbols — essentially as one word. The other rule expresses John loves Mary as a
string of symbols, but can also be used to express any meaning where someone loves Mary.
So, the latter rule can also be used to express Zoltan loves Mary and so on. Further imagine
that both rules have an equal chance of being used to express John loves Mary. The more
general rule is still a better replicator, because for any randomly chosen set of meanings, we
can expect it to be used more often than the idiosyncratic rule. Its chances of survival to the
next generation are far more secure than the idiosyncratic rule.

Of course, the more general rule will not be learned as easily as the idiosyncratic rule.
In the simulations described above, an idiosyncratic pairing of one meaning to one form
takes only one exposure to learn, but the most general rule takes several. However, the
idiosyncratic rule only covers one meaning, whereas the most general rule covers 100. It is
clear, therefore, that the probability of a acquiring a particular rule given a random sample
of meanings increases with the generality of that rule. The success of I-languages which
contain general rules seems secure.

The picture that emerges, then, is of the language of the population acting as an adaptive
system in its own right. Initially, the rules are minimally general, each pairing one string
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with one meaning. At some point, a chance invention or random noise will lead a learner to
“go beyond the data” in making a generalisation that the previous generation had not made.
This generalisation will then compete with the idiosyncratic rule(s) for the same meaning(s).
Given that generalisations are better replicators, the idiosyncratic rules will be pushed out
over time. The competition will then be replayed amongst generalisations, always with the
more general rules surviving.

The inevitable end state of this process is a language with a syntax that supports compo-
sitionally derived semantics in a highly regular fashion. The grammar for such a language
appears to be the shortest (in terms of numbers of rules) that can express the entire meaning
space. The shorter the grammar, the higher the generality of each of the rules — the shortest
grammar that can still do the job of expressing meanings is therefore the one made up of
optimal replicators.

There is an interesting way in which this replicator-based theory can be tested using
the simulation. If the emergence of compositionality is due to the differential success of
competing replicators, then there should be effects introduced by changing the frequency of
particular meanings. For example, if one meaning is expressed particularly frequently by
speakers, any rule that contributes to the production of a string for that meaning will be a
good replicator. In the simulation results presented so far, idiosyncratic rules have died out
because they contribute to a relatively small portion of E-language. However, if one meaning
is particularly frequent, then we should find that an idiosyncratic form for that meaning will
survive longer.

To test this, the simulation was run again, but the maximum number of utterances was
doubled to 200. The meaning, John loves Mary, was made far more frequent so that it made
up approximately half of the utterances. The results of such runs are consistent with the idea
that replicator dynamics are driving the evolution of language in the simulation. The pattern
of change in the simulation is similar to the one described earlier, with three stages showing
evolution towards compositional syntax. Even in the final stage, however, an idiosyncratic,
non-compositional way of saying John loves Mary survived.

This mechanism — whereby frequent meanings can withstand the pressure to become
compositionally expressed — may explain some features of human languages. For example,
in morphology, suppletive forms tend to correlate with highly frequent meanings. The past
tense form of the frequent verb, go is the non-compositional went not goed. The ordinal
versions of the English numbers after three are compositional — third, fourth, fifth etc. — but
the more frequent first and second are not.

6 Conclusion

In this paper I have argued the case for an appreciation of the role of truly linguistic evolution
(as opposed to biological evolution) in the emergence of syntax. Human language is unique
amongst communication systems in being compositional. It is also unique in the natural
world in being a phenomena that persists over time through observational learning. These
two facts are clearly connected. Once an observationally learned communication system is
off the ground (see Oliphant (this volume) for discussion of why this is not a trivial problem
for evolution), the dynamics introduced make the emergence of compositionality inevitable
without further biological change.
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