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Abstract� Currently� most approaches to retrieving textual materials from scienti�c databases
depend on a lexical match between words in users� requests and those in or assigned to documents in a
database� Because of the tremendous diversity in the words people use to describe the same document�
lexical methods are necessarily incomplete and imprecise� Using the singular value decomposition
�SVD�� one can take advantage of the implicit higher�order structure in the association of terms with
documents by determining the SVD of large sparse term by document matrices� Terms and documents
represented by ����	�� of the largest singular vectors are then matched against user queries� We call
this retrieval method Latent Semantic Indexing �LSI� because the subspace represents important
associative relationships between terms and documents that are not evident in individual documents�
LSI is a completely automatic yet intelligent indexing method� widely applicable� and a promising
way to improve users� access to many kinds of textual materials� or to documents and services for
which textual descriptions are available� A survey of the computational requirements for managing
LSI�encoded databases as well as current and future applications of LSI is presented�

Key words� indexing� information� latent� matrices� retrieval� semantic� singular value
decomposition� sparse� updating

AMS�MOS� subject classi�cations� 
�A
�� 
�A�� ��F
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�� Introduction� Typically� information is retrieved by literally matching terms in documents
with those of a query� However� lexical matching methods can be inaccurate when they are used to
match a user�s query� Since there are usually many ways to express a given concept �synonymy�� the
literal terms in a user�s query may not match those of a relevant document� In addition� most words
have multiple meanings �polysemy�� so terms in a user�s query will literally match terms in irrelevant
documents� A better approach would allow users to retrieve information on the basis of a conceptual
topic or meaning of a document�
Latent Semantic Indexing �LSI� �� tries to overcome the problems of lexical matching by using

statistically derived conceptual indices instead of individual words for retrieval� LSI assumes that
there is some underlying or latent structure in word usage that is partially obscured by variability in
word choice� A truncated singular value decomposition �SVD� �
� is used to estimate the structure in
word usage across documents� Retrieval is then performed using the database of singular values and
vectors obtained from the truncated SVD� Performance data shows that these statistically derived
vectors are more robust indicators of meaning than individual terms� A number of software tools have
been developed to perform operations such as parsing document texts� creating a term by document
matrix� computing the truncated SVD of this matrix� creating the LSI database of singular values and
vectors for retrieval� matching user queries to documents� and adding new terms or documents to an
existing LSI databases �� �	�� The bulk of LSI processing time is spent in computing the truncated
SVD of the large sparse term by document matrices�
Section � is a review of basic concepts needed to understand LSI� Section 	 uses a constructive

example to illustrate how LSI represents terms and documents in the same semantic space� how
a query is represented� how additional documents are added �or folded�in�� and how SVD�updating
represents additional documents� In Section � an algorithm for SVD�updating is discussed along with
a comparison to the folding�in process with regard to robustness of query matching and computational
complexity� Section � surveys promising applications of LSI along with parameter estimation problems
that arise with its use�
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�� Background� The singular value decomposition is commonly used in the solution of uncon�
strained linear least squares problems� matrix rank estimation� and canonical correlation analysis ����
Given an m � n matrix A� where without loss of generality m � n and rank�A� � r� the singular
value decomposition of A� denoted by SVD�A�� is de�ned as

A � U�V T�
�

where UTU � V TV � In and � � diag���� � � � � �n�� �i � � for 
 � i � r� �j � � for j � r � 
� The
�rst r columns of the orthogonal matrices U and V de�ne the orthonormal eigenvectors associated
with the r nonzero eigenvalues of AAT and ATA� respectively� The columns of U and V are referred
to as the left and right singular vectors� respectively� and the singular values of A are de�ned as the
diagonal elements of � which are the nonnegative square roots of the n eigenvalues of AAT �
��

The following two theorems illustrate how the SVD can reveal important information about the
structure of a matrix�

Theorem ���� Let the SVD of A be given by Equation ��� and

�� � �� � � � � �r � �r�� � � � � � �n � �

and let R�A� and N�A� denote the range and null space of A� respectively�
Then�

�� rank property� rank�A� � r� N�A� � spanfvr��� � � � � vng� and
R�A� � spanfu�� � � � � urg� where U � �u�u� � � �um� and V � �v�v� � � � vn��

�� dyadic decomposition� A �

rX
i��

ui � �i � v
T
i �

�� norms� kAk�F � ��� � � � �� ��r � and kAk
�
� � ���

Proof� See �
��

Theorem ���� �Eckart and Young� Let the SVD of A be given by Equation ��� with r � rank�A�
� p � min�m�n� and de	ne

Ak �

kX
i��

ui � �i � v
T
i ����

then

min
rank�B��k

kA� Bk�F � kA�Akk
�
F � �

�
k�� � � � �� �

�
p�

Proof� See �
���

In other words� Ak� which is constructed from the k�largest singular triplets of A� is the closest
rank�k matrix to A �
�� In fact� Ak is the best approximation to A for any unitarily invariant norm
��
�� Hence�

min
rank�B��k

kA� Bk� � kA�Akk� � �k����	�

���� Latent Semantic Indexing� In order to implement Latent Semantic Indexing �� 

� a
matrix of terms by documents must be constructed� The elements of the term�document matrix are
the occurrences of each word in a particular document� i�e��

A � �aij����

where aij denotes the frequency in which term i occurs in document j� Since every word does not
normally appear in each document� the matrix A is usually sparse� In practice� local and global
weightings are applied ��� to increase�decrease the importance of terms within or among documents�
Speci�cally� we can write

aij � L�i� j��G�i�����
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where L�i� j� is the local weighting for term i in document j� and G�i� is the global weighting for term
i� The matrix A is factored into the product of 	 matrices �Equation �
�� using the singular value
decomposition �SVD�� The SVD derives the latent semantic structure model from the orthogonal
matrices U and V containing left and right singular vectors of A� respectively� and the diagonal
matrix� �� of singular values of A� These matrices re�ect a breakdown of the original relationships
into linearly�independent vectors or factor values� The use of k factors or k�largest singular triplets is
equivalent to approximating the original �and somewhat unreliable� term�document matrix by Ak in
Equation ���� In some sense� the SVD can be viewed as a technique for deriving a set of uncorrelated
indexing variables or factors� whereby each term and document is represented by a vector in k�space
using elements of the left or right singular vectors �see Table 
��

Table �

Interpretation of SVD components within LSI�

Ak � Best rank�k approximation to A
m � Number of terms

U � Term vectors n � Number of documents
� � Singular values k � Number of factors
V � Document vectors r � Rank of A

Figure 
 is a mathematical representation of the singular value decomposition� U and V are
considered the term and document vectors respectively� and � represents the singular values� The
shaded regions in U and V and the diagonal line in � represent Ak from Equation ����

It is important for the LSI method that the derived Ak matrix not reconstruct the original term
document matrix A exactly� The truncated SVD� in one sense� captures most of the important
underlying structure in the association of terms and documents� yet at the same time removes the
noise or variability in word usage that plagues word�based retrieval methods� Intuitively� since the
number of dimensions� k� is much smaller than the number of unique terms� m� minor di�erences in
terminology will be ignored� Terms which occur in similar documents� for example� will be near each
other in the k�dimensional factor space even if they never co�occur in the same document� This means
that some documents which do not share any words with a users query may none the less be near it
in k�space� This derived representation which captures term�term associations is used for retrieval�

Consider the words car� automobile� driver� and elephant� The terms car and automobile are
synonyms� driver is a related concept and elephant is unrelated� In most retrieval systems� the query
automobiles is no more likely to retrieve documents about cars than documents about elephants�
if neither used precisely the term automobile in the documents� It would be preferable if a query
about automobiles also retrieved articles about cars and even articles about drivers to a lesser extent�
The derived k�dimensional feature space can represent these useful term inter�relationships� Roughly
speaking� the words car and automobile will occur with many of the same words �e�g� motor� model�
vehicle� chassis� carmakers� sedan� engine� etc��� and they will have similar representations in k�space�
The contexts for driver will overlap to a lesser extent� and those for elephant will be quite dissimilar�
The main idea in LSI is to explicitly model the interrelationships among terms �using the truncated
SVD� and to exploit this to improve retrieval�

���� Queries� For purposes of information retrieval� a user�s query must be represented as a
vector in k�dimensional space and compared to documents� A query �like a document� is a set of
words� For example� the user query can be represented by

�q � q
T
Uk�

��
k ����

where q is simply the vector of words in the users query� multiplied by the appropriate term weights
�see Equation ����� The sum of these k�dimensional terms vectors is re�ected by the qTUk term
in Equation ���� and the right multiplication by ���k di�erentially weights the separate dimensions�
Thus� the query vector is located at the weighted sum of its constituent term vectors� The query
vector can then be compared to all existing document vectors� and the documents ranked by their
similarity �nearness� to the query� One common measure of similarity is the cosine between the query
vector and document vector� Typically� the z closest documents or all documents exceeding some
cosine threshold are returned to the user ���
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Fig� �� Mathematical representation of the matrix Ak�

���� Updating� Suppose an LSI�generated database already exists� That is� a collection of
text objects has been parsed� a term�document matrix has been generated� and the SVD of the term�
document matrix has been computed� If more terms and documents must be added� two alternatives
for incorporating them currently exist� recomputing the SVD of a new term�document matrix or
folding
in the new terms and documents�

Four terms are de�ned below to avoid confusion when discussing updating� Updating refers to
the general process of adding new terms and�or documents to an existing LSI�generated database�
Updating can mean either folding�in or SVD�updating� SVD
updating is the new method of updating
developed in ��	�� Folding
in terms or documents is a much simpler alternative that uses an existing
SVD to represent new information� Recomputing the SVD is not an updating method� but a way
of creating an LSI�generated database with new terms and�or documents from scratch which can be
compared to either updating method�

Recomputing the SVD of a larger term�document matrix requires more computation time and�
for large problems� may be impossible due to memory constraints� Recomputing the SVD allows
the new p terms and q documents to directly a�ect the latent semantic structure by creating a new
term�document matrix A�m�p���n�q�� computing the SVD of the new term�document matrix� and
generating a di�erent Ak matrix� In contrast� folding�in is based on the existing latent semantic
structure� the current Ak� and hence new terms and documents have no e�ect on the representation
of the pre�existing terms and documents� Folding�in requires less time and memory but can have
deteriorating e�ects on the representation of the new terms and documents�

Folding�in documents is essentially the process described in Section ��� for query representation�
Each new document is represented as a weighted sum of its component term vectors� Once a new
document vector has been computed it is appended to the set of existing document vectors or columns
of Vk �see Figure ��� Similarly� new terms can be represented as a weighted sum of the vectors for
documents in which they appear� Once the term vector has been computed it is appended to the set
of existing term vectors or columns of Uk �see Figure 	��

To fold�in a new m� 
 document vector� d� into an existing LSI model� a projection� �d� of d onto
the span of the current term vectors �columns of Uk� is computed by

�d � d
T
Uk�

��
k ����

Similarly� to fold�in a new 
 � n term vector� t� into an existing LSI model� a projection� �t� of t onto
the span of the current document vectors �columns of Vk� is determined by

�t � tVk�
��
k ����

�� A Demonstration of Latent Semantic Indexing� In this section� Latent Semantic In�
dexing �LSI� and the folding�in process discussed in Section ��	 are applied to a small database of book
titles� In Table �� 
� book titles from book reviews published in the December 
��	 issue �volume ��
number � of SIAM Review are listed� All the underlined words in Table � denote keywords which
are used as referents to the book titles� The parsing rule used for this sample database required that
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keywords appear in more than one book title� Of course� alternative parsing strategies can increase
or decrease the number of indexing keywords �or terms��

Table �

Database of titles from books reviewed in SIAM Review� Underlined keywords appear in more

than one book title�

Label Titles

B� A Course on Integral Equations

B� Attractors for Semigroups and Evolution Equations

B� Automatic Di�erentiation of Algorithms� Theory� Implementation�

and Application

B� Geometrical Aspects of Partial Di�erential Equations

B� Ideals� Varieties� and Algorithms 	 An Introduction to

Computational Algebraic Geometry and Commutative Algebra

B
 Introduction to Hamiltonian Dynamical Systems and the

N �Body Problem

B� Knapsack Problems� Algorithms and Computer Implementations

B Methods of Solving Singular Systems of Ordinary

Di�erential Equations

B� Nonlinear Systems

B�� Ordinary Di�erential Equations

B�� Oscillation Theory for Neutral Di�erential

Equations with Delay

B�� Oscillation Theory of Delay Di�erential Equations

B�� Pseudodi�erential Operators and Nonlinear Partial Di�erential

Equations

B�� Sinc Methods for Quadrature and Di�erential Equations

B�� Stability of Stochastic Di�erential Equations with Respect

to Semi�Martingales

B�
 The Boundary Integral Approach to Static and Dynamic

Contact Problems

B�� The Double Mellin�Barnes Type Integrals and Their Applications

to Convolution Theory

Corresponding to the text in Table � is the 
�� 
� term�document matrix shown in Table 	� The
elements of this matrix are the frequencies in which a term occurs in a document or book title �see
Section �� For example� in book title B�� the third column of the term�document matrix� algorithms�
theory� implementation� and application all occur once� For simplicity� term weighting is not used in
this example matrix� Now compute the truncated SVD �with k � �� of the 
�� 
� matrix in Table �
to obtain the rank�� approximation A� as de�ned in Figure 
�
Using the �rst column of U� multiplied by the �rst singular value� ��� for the x�coordinates and

the second column of U� multiplied by the second singular value� ��� for the y�coordinates� the terms
can be represented on the Cartesian plane� Similarly� the �rst column of V� scaled by �� are the
x�coordinates and the second column of V� scaled by �� are the y�coordinates for the documents
�book titles�� Figure  is a two�dimensional plot of the terms and documents for the 
�� 
� sample
term�document matrix�

Notice the documents and terms pertaining to di�erential equations are clustered around the x�
axis and the more general terms and documents related to algorithms and applications are clustered
around the y�axis� Such groupings suggest that the subset of book titles fB�� B�� B	� B
� B��
B��� B��� B��g contains titles similar in meaning� for example�
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Table �

The �
� �� term�document matrix corresponding to the book titles in Table ��

Terms Documents
B
 B� B	 B B� B� B� B� B� B
� B

 B
� B
	 B
 B
� B
� B
�

algorithms � � 
 � 
 � 
 � � � � � � � � � �
application � � 
 � � � � � � � � � � � � � 

delay � � � � � � � � � � 
 
 � � � � �
di�erential � � � 
 � � � 
 � 
 
 
 
 
 
 � �
equations 
 
 � 
 � � � 
 � 
 
 
 
 
 
 � �
implementation � � 
 � � � 
 � � � � � � � � � �
integral 
 � � � � � � � � � � � � � � 
 

introduction � � � � 
 
 � � � � � � � � � � �
methods � � � � � � � 
 � � � � � 
 � � �
nonlinear � � � � � � � � 
 � � � 
 � � � �
ordinary � � � � � � � 
 � 
 � � � � � � �
oscillation � � � � � � � � � � 
 
 � � � � �
partial � � � 
 � � � � � � � � 
 � � � �
problem � � � � � 
 
 � � � � � � � � 
 �
systems � � � � � 
 � 
 
 � � � � � � � �
theory � � 
 � � � � � � � 
 
 � � � � 
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���� Queries� Suppose we are interested in the documents that pertain to application and the

ory� Recall that a query vector q is represented as �q via �q � qTUk�

��
k �see Equation ����� Since the

word and is not an indexed term �i�e�� a stop word� in the database� it is omitted from the query
leaving application theory� Mathematically� the Cartesian coordinates of the query are determined
by Equation ���� The coordinates for the sample query application theory are computed in Figure �
and then represented by the point labeled QUERY in Figure �� This query vector is then compared
�in the Cartesian plane� to all the documents in the database� All documents whose cosine with the
query vector is greater than ���� is illustrated in the shaded region of Figure ��

�
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Fig� �� Derived coordinates for the query of application theory�

A di�erent cosine threshold� of course� could have been used so that a larger or smaller set of
documents would be returned� The cosine is merely used to rank�order documents and its explicit
value is not always an adequate measure of relevance ��	� ����

���� Comparison with Lexical Matching� In this example� LSI has been applied using two
factors� i�e� A� is used to approximate the original 
�� 
� term�document matrix� Using a cosine
threshold of ���� six book titles related to application and theory were returned� titles B�� B�� B�
B�� B�� and B��� If the cosine threshold was reduced to ���� then titles B�� and B�� �which are
somewhat related� are also returned� With lexical�matching� only four book titles �B�� B��� B���
B��� are returned� Hence� the LSI approach can extract four additional book titles �B�� B� B��
B�� which are relevant to the query yet share no common terms� This ability to retrieve relevant
information based on meaning rather than literal term usage is the main motivation for using LSI�
Table  lists the LSI�ranked documents �book titles� with di�erent numbers of factors �k�� The

documents returned in Table  satisfy a cosine threshold of ���� i�e�� returned documents are within a
cosine of ��� of the pseudo�document used to represent the query� As alluded to earlier� the cosine best
serves as a measure for rank�ordering only as Table  clearly demonstrates that its value associated
with returned documents can signi�cantly vary with changes in the number of factors k�

���� Folding�In� Suppose the �ctitious titles listed in Table � are to be added to the original set
of titles in Table �� While some titles in Table � use terms related to nonlinear systems or di�erential
equations� notice the di�erent meaning of the speci�c term ordinary in book titles B�
 and B�� as
opposed to book titles B	 and B��� As with Table �� all underlined words in Table � are considered
signi�cant since they appear in more than one title �across all �� titles from Tables � and ��� Folding�
in �see Section ��	� is one approach for updating the original LSI�generated database with the 	 new
titles� Figure � demonstrates how these titles are folded�into the database based on k � � LSI factors
via Equation ���� The new book titles are denoted on the graph by their document labels� Notice that
the coordinates of the original titles stay �xed� and hence the new data has no e�ect on the clustering
of existing terms or documents�



Using Linear Algebra for Intelligent Information Retrieval 



���� Recomputing the SVD� Ideally� the most robust way to produce the best rank�k approx�
imation �Ak� to a term�document matrix which has been updated with new terms and documents is to
simply compute the SVD of a reconstructed term�document matrix� say �A� Updating methods which
can approximate the SVD of the larger term�document matrix �A become attractive in the presence
of memory or time constraints� As discussed in ��	�� the the accuracy of SVD�updating approaches
can be easily compared to that obtained when the SVD of �A is explicitly computed�
Suppose the titles from Table � are combined with those of Table � in order to create a new 
����

term�document matrix �A� Following Figure 
� we then construct the best rank�� approximation to �A�

�A� � �U�
���
�V T
� ����

Figure � is a two�dimensional plot of the 
� terms and �� documents �book titles� using the elements
of �U� and �V� for term and document coordinates� respectively� Notice the di�erence in term and
document positions between Figures � and �� Clearly� the the new book titles from Table � have
helped rede�ne the underlying latent structure when the SVD of �A is computed� That is� one can
discuss ordinary algorithms and ordinary di�erential equations in di�erent contexts� Folding�in the
	 new book titles based on the existing rank�� approximation to A �de�ned by Table 	� may not
accurately reproduce the true LSI representation of the new �or updated� database�

In practice� the di�erence between folding�in and SVD�updating is likely to depend on the number
of new documents and terms relative to the number in the original SVD of A� Thus� we expect
SVD�updating to be especially valuable for rapidly changing databases�

Table �

Returned documents based on di�erent numbers of LSI factors�

Number of Factors
k � � k �  k � �

B
� ��� B
� ��� B
� ���
B 	 ��� B 	 ��� B 	 ���
B � ��� B
� ��� B
� �	�
B
� ��� B

 ��� B

 �	�
B � ��� B
� �	�
B � ��� B � �	�
B
� ��� B 
 �	�
B

 ��� B � ���
B 
 �	�

Table �

Additional titles for updating�

Label Titles

B
� Systems of Nonlinear Equations
B
� Ordinary Algorithms for Integral and Di�erential Equations

B�� Ordinary Applications of Oscillation Theory
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�� SVD�Updating� The process of SVD�updating discussed in Section ��	 can also be illus�
trated using titles from Tables � and �� The three steps required to perform a complete SVD�update
involve adding new documents� adding new terms� and correction for changes in term weightings� The
order of these steps� however� need not follow the ordering presented in this section �see ��	���

���� Overview� Let D denote the p new document vectors to process� then D is an m�p sparse
matrix since most terms �as was the case with the original term�document matrix A� do not occur in
each document� D is appended to the columns of the rank�k approximation of the m� n matrix A�
i�e�� from Equation ���� Ak so that the k�largest singular values and corresponding singular vectors of

B � �Ak j D��
��

are computed� This is almost the same process as recomputing the SVD� only A is replaced by Ak�
Let T denote a collection of q term vectors for SVD�updating� Then T is a q � n sparse matrix�

since each term rarely occurs in every document� T is then appended to the rows of Ak so that the
k�largest singular values and corresponding singular vectors of

C �

�
Ak

T

�
�

�

are computed�
The correction step for incorporating changes in term weights �see Equation ���� is performed after

any terms or documents have been SVD�updated and the term weightings of the original matrix have
changed� For a change of weightings in j terms� let Yj be an m� j matrix comprised of rows of zeros
or rows of the j�th order identity matrix� Ij� and let Zj be an n � j matrix whose columns specify
the actual di�erences between old and new weights for each of the j terms �see ��	� for examples��
Computing the SVD of the following rank�j update to Ak de�nes the correction step�

W � Ak � YjZ
T
j ��
��

���� SVD�Updating Procedures� The mathematical computations required in each phase
of the SVD�updating process are detailed in this section� SVD�updating incorporates new term or
document information into an existing semantic model �Ak from Equation ���� using sparse term�
document matrices �D� T � and YjZ

T
j � discussed in Section �
� SVD�updating exploits the previous

singular values and singular vectors of the original term�documents matrix A as an alternative to
recomputing the SVD of �A in Equation ���� In general� the cost of computing the SVD of a sparse
matrix �	� can be generally expressed as

I � cost �GT
Gx� � trp � cost �Gx��

where I is the number of iterations required by a Lanczos�type procedure ��� to approximate the
eigensystem of GTG and trp is the number of accepted singular triplets �i�e�� singular values and
corresponding left and right singular vectors�� The additional multiplication by G is required to
extract the left singular vector given approximate singular values and their corresponding right singular
vector approximations from a Lanczos procedure� A brief summary of the required computations for
updating an existing rank�k approximation Ak using standard linear algebra is given below� Table �
contains a list of symbols� dimensions� and variables used to de�ne the SVD�updating phases�

Table �

Symbols used in SVD�updating phases�

Symbol Dimensions De�nition
A m � n Original term�document matrix
Uk m� k Left singular vectors of Ak
�k k� k Singular values of Ak
Vk n� k Right singular vectors of Ak
Zj n� j Adjusted term weights
Yj m� j Permutation matrix
D m� p New document vectors
T q � n New term vectors
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Updating Documents� Let B � �Ak j D� from Equation �
�� and de�ne SVD �B� � UB�BV
T
B �

Then

U
T
k B

�
Vk O

O Ip

�
� ��k j U

T
k D��

since Ak � Uk�kV
T
k � If F � ��k j U

T
k D� and SVD�F� � UF�FV

T
F � then it follows that

UB � UkUF � VB �

�
Vk O

O Ip

�
VF � and �F � �B��
	�

Hence UB and VB are m� k and �n � p�� �k � p� dense matrices� respectively�

Updating Terms� Let C �

�
Ak

T

�
from Equation �

� and de�ne SVD �C� � UC�CV

T
C �

Then �
UT
k O

O Iq

�
CVk �

�
�k
TVk

�
�

If H �

�
�k
TVk

�
and SVD�H� � UH�HV

T
H then it follows that

UC �

�
Uk O

O Iq

�
UH � VC � VkVH � and �H � �C�

Hence UC and VC are �m� q� � �k� q� and n� k dense matrices� respectively�

Term Weight Corrections� Let W � Ak � YjZ
T
j � where Yj is m � j and Zj is n � j from

Equation �
��� and de�ne SVD�W � � UW�WV T
W � Then

U
T
k WVk � ��k � U

T
k YjZ

T
j Vk��

If Q � ��k � UT
k YjZ

T
j Vk� and SVD�Q� � UQ�QV

T
Q � then it follows that

UW � UkUQ and VW � VkVQ�

Since �UQUk�
TWVkVQ � �Q � �W � Hence UW and VW are m � k and n � k dense matrices�

respectively�
Table � contains the complexities for folding�in terms and documents� recomputing the SVD� and

the three phases of SVD�updating� Using the complexities in Table � the required number of �oating�
point operations �or �ops� for each method can be compared for varying numbers of added documents
or terms� As shown in ��	� for a condensed encyclopedia test case� the computational advantages
of one scheme over another depends the values of the variables listed in Table �� For example� if
the sparsity of the D matrix from Equation �
�� re�ects that of the original m � n term�document
matrix A with m � n� then folding�in will still require considerably fewer �ops than SVD�updating
when adding p new documents provided p � n� The expense in SVD�updating can be attributed to
the O��k�m � �k�n� �ops associated with the dense matrix multiplications involving Uk and Vk in
Equation �
	��

���� Orthogonality� One important distinction between the folding�in �see Section ��	� and
the SVD�updating processes lies in the guarantee of orthogonality in the vectors �or axes� used for
term and document coordinates� Recall that an orthogonal matrix Q satis�es QTQ � In� where In is
the n�th order identity matrix� Let Dp be the collection of all folded�in documents where each column
of the p � k matrix is a document vector of the form �d from Equation ���� Similarly� let Tq be the
collection of all folded�in terms such that each column of the q�k matrix is a term vector of the form
�t from Equation ���� Then� all term vectors and document vectors associated with folding�in can be

represented as �Uk �
�
U
T
k j TTq

�T
and �Vk �

�
V
T
k j DT

p

�T
� respectively� The folding�in process corrupts

the orthogonality of �Uk and �Vk by appending non�orthogonal submatrices Tq and Dp to Uk and Vk�
respectively� Computing �UT

k
�Uk and �V T

k
�Vk� the loss of orthogonality in �Uk and �Vk can be measured by

k �UT
k
�Uk � Ikk� and k �V

T
k
�Vk � Ikk��
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Table �

Computational complexity of updating methods�

Method Complexity

SVD�updating �I � �nnz�D� � mk � k � �m � d��
documents trp � ��nnz�D� � �mk �m��

� ���k� � k��m� n��
SVD�updating �I � �nnz�T � � kn� k � �n� q��

terms trp � ��nnz�T � � �kn � k � �n� q��
� ���k� � k��m � n���

SVD�updating �I � �nnz�Zj� � km� �mj � �kn� 	k � �n� �j �m�
correction step �trp � ��nnz�Zj� � �km� �kn� k � j � n��

� ���k� � k��m� n��
Folding�in documents �mkp

Folding�in terms �nkq

Recomputing I � �nnz�A�� �m� q�� �n� p���
the SVD trp � �nnz�A�� �m� q�

Folding�in does not maintain the orthogonality of �Uk or �Vk since arbitrary vectors of weighted terms
or documents are appended to Uk or Vk� respectively� However� the amount by which the folding�in
method perturbs the orthogonality of �Uk or �Vk does indicate how much distortion has occurred due
to the addition of new terms or documents�
The trade�o� in computational complexity and loss of orthogonality in the coordinate axes for

updating databases using LSI poses interesting future research� Though the SVD�updating process
is considerably more expensive ��	� than folding�in� the true lower�rank approximation to the true
term�document matrix A de�ned by Figure 
 is maintained� Signi�cant insights in the future could
be gained by monitoring the loss of orthogonality associated with folding�in and correlating it to the
number of relevant documents returned within particular cosine thresholds �see Section 	�
��

���� SVD�Updating Example� To illustrate SVD�updating� suppose the �ctitious titles in
Table � are to be added to the original set of titles in Table �� In this example� only documents
are added and weights are not adjusted� hence only the SVD of the matrix B in Equation �
�� is
computed�

Initially� a 
� � 	 term�document matrix� D� corresponding to the �ctitious titles in Table � is
generated and then appended to A� to form a 
�� �� matrix B of the form given by Equation �
���
Following Figure 
� the best rank�� approximation �B�� to B is given by

B� � �U�
���
�V T
� �

where the columns of �U� and �V� are the left and right singular vectors� respectively� corresponding to
the two largest singular values of B�
Figure � is a two�dimensional plot of the 
� terms and 
� documents �book titles� using the

elements of �U� and �V� for term and document coordinates� respectively� Notice the similar clustering
of terms and book titles in Figures � and � �recomputing the SVD� and the di�erence in document
and term clustering with Figure � �folding�in��
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�� Applications of Latent Semantic Indexing� In this section� several applications of LSI
are discussed ranging from information retrieval and �ltering to models of human memory� Some open
computational and statistical�based issues related to the practical use of LSI for such applications are
also mentioned�

���� Information Retrieval� Latent Semantic Indexing was initially developed for informa�
tion retrieval applications� In these application� a �xed database is indexed and users pose a series
of retrieval queries� The e�ectiveness of retrieval systems is often evaluated using test collections
developed by the information retrieval community� These collections consist of a set of documents� a
set of user queries� and relevance judgements �i�e�� for each query every document in the collection has
been judged as relevant or not to the query��� This allows one to evaluate the e�ectiveness of di�erent
systems in retrieving relevant documents and at the same time not returning irrelevant documents�
Two measures� precision and recall� are used to summarize retrieval performance� Recall is the pro�
portion of all relevant documents in the collection that are retrieved by the system� and precision is
the proportion of relevant documents in the set returned to the user� Average precision across several
levels of recall can then be used as a summary measure of performance�

Results were obtained for LSI and compared against published or computed results for other
retrieval techniques� notably the standard keyword vector method in SMART ���� For several infor�
mation science test collections� the average precision using LSI ranged from comparable to to 	��
better than that obtained using standard keyword vector methods� See �� �� 
�� for details of these
evaluations� The LSI method performs best relative to standard vector methods when the queries and
relevant documents do not share many words� and at high levels of recall�

Term Weighting� One of the common and usually e�ective methods for improving retrieval
performance in vector methods is to transform the raw frequency of occurrence of a term in a document
�i�e�� the value of a cell in the term by document matrix� by some function �see Equation ��� Such
transformations normally have two components� Each term is assigned a global weight� indicating its
overall importance in the collection as an indexing term� The same global weighting is applied to an
entire row �term� of the term�document matrix� It is also possible to transform the term�s frequency
in the document� such a transformation is called a local weighting� and is applied to each cell in the
matrix�

The performance for several weighting schemes have been compared in ���� A transformed matrix
is automatically computed� the truncated SVD shown in Figure 
 is computed� and performance is
evaluated� A log transformation of the local cell entries combined with a global entropy weight for
terms is the most e�ective term�weighting scheme� Averaged over �ve test collections� log � entropy

weighting was �� more e�ective than raw term weighting�

Relevance Feedback� The idea behind relevance feedback is quite simple� Users are very
unlikely to be able to specify their information needs adequately� especially on the �rst try� In
interactive retrieval situations� it is possible to take advantage of user feedback about relevant and
non�relevant documents ����� Systems can use information about which documents are relevant in
many ways� Typically the weight given to terms occurring in relevant documents is increased and
the weight of terms occurring in non�relevant documents is decreased� Most of the tests using LSI
have involved a method in which the initial query is replaced with the vector sum of the documents
the users has selected as relevant� The use of negative information has not yet been exploited in LSI�
for example� by moving the query away from documents which the user has indicated are irrelevant�
Replacing the users� query with the �rst relevant document improves performance by an average of
		� and replacing it with the average of the �rst three relevant documents improves performance by
an average of ��� �see ��� for details�� Relevance feedback provides sizable and consistent retrieval
advantages� One way of thinking about the success of these methods is that many words �those
from relevant documents� augment the initial query which is usually quite impoverished� LSI does
some of this kind of query expansion or enhancement even without relevance information� but can be
augmented with relevance information�

� Exhaustive relevance judgements �when all documents are judged for every query� are ideal for sys�
tem evaluation� In large document collections� however� exhaustive judgements become prohibitively
costly� For large collections a pooling method is used� Relevance judgements are made on the pooled
set of the top�ranked documents returned by several di�erent retrieval systems for the same set of
queries� Most of the top�ranked documents for new systems will hopefully be contained in the pool
set and thus have relevance judgements associated with them�
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���� Choosing the Number of Factors� Choosing the number of dimensions �k� for Ak shown
in Figure 
 is an interesting problem� While a reduction in k can remove much of the noise� keeping too
few dimensions or factors may loose important information� As discussed in �� using a test database
of medical abstracts� LSI performance� can improve considerably after 
� or �� dimensions� peaks
between �� and 
�� dimensions� and then begins to diminish slowly� This pattern of performance
�initial large increase and slow decrease to word�based performance� is observed with other datasets
as well� Eventually performance must approach the level of performance attained by standard vector
methods� since with k � n factors Ak will exactly reconstruct the original term by document matrix
A in Equation ��� That LSI works well with a relatively small �compared to the number of unique
terms� number of dimensions or factors k shows that these dimensions are� in fact� capturing a major
portion of the meaningful structure�

���� Information Filtering� Information �ltering is a problem that is closely related to in�
formation retrieval �
�� In information �ltering applications� a user has a relatively stable long�term
interest or pro�le� and new documents are constantly received and matched against this standing
interest� Selective dissemination of information� information routing� and personalized information
delivery are also used to refer to the matching of an ongoing stream of new information to relatively
stable user interests�

Applying LSI to information �ltering applications is straightforward� An initial sample of docu�
ments is analyzed using standard LSI�SVD tools� A users� interest is represented as one �or more�
vectors in this reduced�dimension LSI space� Each new document is matched against the vector and
if it is similar enough to the interest vector it is recommended to the user� Learning methods like
relevance feedback can be used to improve the representation of interest vectors over time�
Foltz �
�� compared LSI and keyword vector methods for �ltering Netnews articles� and found 
���

�	� advantages for LSI� Dumais and Foltz in �

� compared several di�erent methods for representing
users interests for �ltering technical memoranda� The most e�ective method used vectors derived
from known relevant documents �like relevance feedback� combined with LSI matching�

TREC� Recently� LSI has been used for both information �ltering and information retrieval in
TREC �Text REtrieval Conference�� a large�scale retrieval conference conference sponsored by NIST
��� ��� The TREC collection contains more than 
� ���� ��� documents �representing more that 	
gigabytes of ASCII text�� ��� queries� and relevance judgements pooled from the return sets of more
than 	� systems� The content of the collections varies widely ranging from news sources �AP News
Wire� Wall Street Journal� San Jose Mercury News�� to journal abstracts �Zi� Davis� DOE abstracts��
to the full text of the Federal Register and U�S� Patents� The queries are very long and detailed
descriptions� averaging more than �� words in length� While these queries may be representative of
information requests in �ltering applications� they are quite unlike the short requests seen in previous
IR collections or in interactive retrieval applications �where the average query is only one or two
words long�� The fact that the TREC queries are quite rich means that smaller advantages would be
expected for LSI or any other methods that attempt to enhance users queries�
The big challenge in this collection was to extend the LSI tools to handle collections of this size�

The results were quite encouraging� At the time of the TREC conferences it was not reasonable to
compute Ak from Figure 
 for the complete collection� Instead� a sample

� of about ��� ��� documents
and ��� ��� terms was used� Such term by document matrices �A� are quite sparse� containing only
���
������ non�zero entries� Computing A���� i�e� the ����largest singular values and corresponding
singular vectors� by a single�vector Lanczos algorithm �	� required about 
� hours of CPU time on
a SUN SPARCstation 
� workstation� Documents not in the original LSI analysis were folded
in as
previously described in Section 	�	� That is� the vector for a document is located at the weighted
vector sum of its constituent term vectors�
Although it is very di�cult to compare across systems in any detail because of large pre�processing�

representation and matching di�erences� LSI performance was quite good ���� For �ltering tasks� using
information about known relevant documents to create a vector for each query was bene�cial� The
retrieval advantage of 	
� was somewhat smaller than that observed for other �ltering tests and is
attributable to the good initial queries in TREC� For retrieval tasks� LSI showed 
�� improvement
when compared with the keyword vector methods� Again the detailed original queries account for the
somewhat smaller advantages than previously observed�

� Performance is average precision over recall levels of ����� ���� and �����
� Di�erent samples for information retrieval and �ltering and for TREC�
 and TREC�� � see ��� ��

for details�
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The computation of Ak for the large sparse TREC matrices A was accomplished without di�culty
�numerical or convergence problems� using sophisticated implementations of the Lanczos algorithm
from SVDPACKC �	�� However� the computational and memory requirements posed by the TREC
collection greatly motivated the development of the SVD�updating procedures discussed in Section �

���� Novel Applications� Because LSI is a completely automatic method� it is widely appli�
cable to new collections of texts �including to di�erent languages� as described below�� The fact that
both terms and documents are represented in the same reduced�dimension space adds another dimen�
sion of �exibility to the LSI retrieval model� Queries can be either terms �as in most information
retrieval applications�� documents or combinations of the two �as in relevance feedback�� Queries can
even be represented as multiple points of interest �
��� Similarly� the objects returned to the user
are typically documents� but there is no reason that similar terms could not be returned� Returning
nearby terms is useful for some applications like online thesauri �that are automatically constructed
by LSI�� or for suggesting index terms for documents for publications which require them�

Although term�document matrices have been used for simplicity� the LSI method can be applied to
any descriptor�object matrix� We typically use only single terms to describe documents� but phrases
or n�grams could also be included as rows in the matrix� Similarly� an entire document is usually the
text object of interest� but smaller� more topically coherent units of text �e�g�� paragraphs� sections�
could be represented as well� For example� LSI has been incorporated as a fuzzy search option
in NETLIB ��� for retrieving algorithms� code descriptions� and short articles from the NA�Digest
electronic newsletter�

Regardless of how the original descriptor�object matrix is derived� a reduced�dimension approxi�
mation can be computed� The important idea in LSI is to go beyond the original descriptors to more
reliable statistically derived indexing dimensions� The wide applicability of the LSI analysis is further
illustrated by describing several applications in more detail�

Cross�Language Retrieval� It is important to note that the LSI analysis makes no use of
English syntax or semantics� Words are identi�ed by looking for white spaces and punctuation in
ASCII text� Further� no stemming is used to collapse words with the same morphology� If words with
the same stem are used in similar documents they will have similar vectors in the truncated SVD
de�ned in Figure 
� otherwise� they will not� �For example� in analyzing an encyclopedia� doctor is
quite near doctors but not as similar to doctoral�� This means that LSI is applicable to any language�
In addition� it can be used for cross�language retrieval � documents are in several languages and user
queries �again in several languages� can match documents in any language� What is required for
cross�language applications is a common space in which words from many languages are represented�

Landauer and Littman in ���� described one method for creating such an LSI space� The original
term�document matrix is formed using a collection of abstracts that have versions in more than one
language �French and English� in their experiments�� Each abstract is treated as the combination
of its French English versions� The truncated SVD is computed for this term by combined�abstract
matrix A� The resulting space consists of combined�language abstracts� English words and French
words� English words and French words which occur in similar combined abstracts will be near each
other in the reduced�dimension LSI space� After this analysis� monolingual abstracts can be folded
in
�see Section 	�	� � a French abstract will simply be located at the vector sum of its constituent words
which are already in the LSI space� Queries in either French or English can be matched to French
or English abstracts� There is no di�cult translation involved in retrieval from the multilingual LSI
space� Experiments showed that the completely automatic multilingual space was more e�ective than
single�language spaces� The retrieval of French documents in response to English queries �and vice
versa� was as e�ective as �rst translating the queries into French and searching a French�only database�
The method has shown almost as good results for retrieving English abstracts and Japanese Kanji
ideographs� and for multilingual translations �English and Greek� of the Bible �����

Modeling Human Memory� Landauer and Dumais �
�� have recently used LSI spaces to
model some of the associative relationships observed in human memory� They were interested in
term�term similarities� LSI is often described intuitively as a method for �nding synonyms � words
which occur in similar patterns of documents will be near each other in the LSI space even if they
never co�occur in a single document �e�g�� doctor� physician both occur with many of the same words
like nurse� hospital� patient� treatment� etc��� Landauer and Dumais tested how well an LSI space
would mimic the knowledge needed to pass a synonym test� They used the synonym test from ETS�s
Test Of English as a Foreign Language �TOEFL�� The test consists of �� multiple choice test items
each with a stem word �e�g�� levied� and four alternatives �e�g�� imposed� believer� requested� correlated��
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one of which is the synonym� An LSI analysis was performed on an encyclopedia represented by a
�
� ��� word by 	�� �	 article matrix A� For the synonym test they simply computed the similarity of
the stem word to each alternative and picked the closest one as the synonym �for the above example
imposed was chosen � ��� imposed� ��� believed� ��� requested� ���	 correlated�� Using this method
LSI scored �� correct� compared with 		� correct for word�overlap methods� and �� correct for
the average student taking the test� This is surprisingly good performance given that synonymy
relationships are no di�erent than other associative relationships �e�g�� algebra is quite near words like
algebraic� topology� theorem� Cayley and quadratic� although none are synonyms��

Matching People Instead of Documents� In a couple of applications� LSI has been used
to return the best matching people instead of documents� In these applications� people were repre�
sented by articles they had written� In one application �
��� known as the Bellcore Advisor� a system
was developed to �nd local experts relevant to users� queries� A query was matched to the nearest
documents and project descriptions and the authors organization was returned as the most relevant
internal group� In another application ���� LSI was used to automate the assignment of reviewers to
submitted conference papers� Several hundred reviewers were described by means of texts they had
written� and this formed the basis of the LSI analysis� Hundreds of submitted papers were represented
by their abstracts� and matched to the closest reviewers� These LSI similarities along with additional
constraints to insure that each paper was reviewed p times and that each reviewer received no more
than r papers to review were used to assign papers to reviewers for a major human�computer interac�
tion conference� Subsequent analyses suggested that these completely automatic assignments �which
took less than 
 hour� were as good a those of human experts�

Noisy Input� Because LSI does not depend on literal keyword matching� it is especially useful
when the text input is noisy� as in OCR �Optical Character Reader�� open input� or spelling errors� If
there are scanning errors and a word �Dumais� is misspelled �as Duniais�� many of the other words in
the document will be spelled correctly� If these correctly spelled context words also occur in documents
which contained a correctly spelled version of Dumais� then Dumais will probably be near Duniais in
the k�dimensional space determined by Ak �see Equation � or Figure 
��
Nielsen et al� in ���� used LSI to index a small collection of abstracts input by a commercially

available pen machine in its standard recognizer mode� Even though the error rates were ���� at
the word level� information retrieval performance using LSI was not disrupted �compared with the
same uncorrupted texts�� Kukich �
�� used LSI for a related problem� spelling correction� In this
application� the rows were unigrams and bigrams and the columns were correctly spelled words� An
input word �correctly or incorrectly spelled� was broken down into its bigrams and trigrams� the query
vector was located at the weighted vector sum of these elements� and the nearest word in LSI space
was returned as the suggested correct spelling�

���� Summary of LSI Applications� Word matching results in surprisingly poor retrieval�
LSI can improve retrieval substantially by replacing individual words with a smaller number of more
robust statistically derived indexing concepts� LSI is completely automatic and widely applicable�
including to di�erent languages� Furthermore� since both terms and documents are represented in the
same space� both queries and returned items can be either words or documents� This �exibility has
led to a growing number of novel applications�

��� Open Computational�Statistical Issues� There are a number of computational�statistical
improvements that would make LSI even more useful� especially for large collections�

� computing the truncated SVD of extremely large sparse matrices �i�e�� much larger than the
usual 
��� ��� by ��� ��� term by document matrix processed on RISC workstations with
under ��� megabytes of RAM�

� perform SVD�updating �see Section � in real�time for databases that change frequently�
and

� e�ciently comparing queries to documents �i�e�� �nding near neighbors in high�dimension
spaces��

���� Related Work� A number of other researchers are using related linear algebra methods
for information retrieval and classi�cation work� Schutze ���� and Gallant �
	� have used SVD and
related dimension reduction ideas for word sense disambiguation and information retrieval work� Hull
�
�� and Yang and Chute ���� have used LSI�SVD as the �rst step in conjunction with statistical
classi�cation �e�g� discriminant analysis�� Using the LSI�derived dimensions e�ectively reduces the
number of predictor variables for classi�cation� Wu et al� in ���� also used LSI�SVD to reduce
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the training set dimension for a neural network protein classi�cation system used in human genome
research�
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