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ABSTRACT 
 
This paper reports the results of our experiments on 
speaker identification in the SCOTUS corpus, which 
includes oral arguments from the Supreme Court of the 
United States. Our main findings are as follows: 1) a 
combination of Gaussian mixture models and 
monophone HMM models attains near-100% text-
independent identification accuracy on utterances that 
are longer than one second; 2) the sampling rate of 
11025 Hz achieves the best performance (higher 
sampling rates are harmful); and a sampling rate as 
low as 2000 Hz still achieves more than 90% accuracy; 
3) a distance score based on likelihood numbers was 
used to measure the variability of phones among 
speakers; we found that the most variable phone is the 
phone UH (as in good), and the velar nasal NG is more 
variable than the other two nasal sounds M and N; 4.) 
our models achieved “perfect” forced alignment on 
very long speech segments (40 minutes). These 
findings and their significance are discussed. 
 

Index Terms— Speaker recognition, Hidden 
Markov models, Speech analysis 

 
 

1. INTRODUCTION 
 
The U.S. Supreme Court began recording its oral 
arguments in the early 1950s, and some 9,000 hours of 
such recording are stored in the National Archives. 
The transcripts do not identify the speaking turns of 
individual Justices, referring to them all as “The 
Court”. Therefore, as part of a project to make this 
material available online in aligned digital form, we 
have developed techniques for identifying speakers 
and aligning entire (hour-long) transcripts with the 
digitized audio. 

Information used for speaker recognition may 
include spectral features [1, 2, 3]; phonetic features [4, 
5]; and prosodic features [6, 7]. State-of-the-art 
speaker recognition algorithms are based on Gaussian 

Mixture Models (GMM) of spectral measurements, 
such as Mel Frequency Cepstral Coding (MFCC) 
features [8] or Perceptual Linear Prediction (PLP) 
features [9]. The greatest challenge for practical 
application of speaker recognition is, however, the 
high variability of channel properties.  

In this paper, we demonstrate that GMM-based, 
monophone HMM models attain robust high 
performance in speaker identification on the SCOTUS 
corpus, despite the reverberant environment and the 
summation of a varying set of microphones. We also 
establish that our model generates accurate word 
alignments on hour-long recordings without the need 
for internal time marks. We suggest that these results 
not only provide useful information for building robust 
speaker recognition and word-alignment systems for 
archival recordings, but they also help develop a better 
understanding of speaker variability in speech 
production. 

 
 

2. DATA, MODEL AND PERFORMANCE 
 
The SCOTUS corpus includes more than 50 years of 
oral arguments from the Supreme Court of the United 
States. Seventy-eight arguments from the 2001 term 
were transcribed, speaker identified, and manually 
word-aligned by the OYEZ project [10]. Each 
argument is approximately one hour long. The signal-
to-noise ratios (SNR) of the recordings are between 30 
and 40 dB. The “clean” turns (based on the transcripts) 
of eight Justices were extracted from these arguments; 
then, 800 turns (100 for each Justice) were randomly 
set aside as a test set, with the remaining 14,310 turns 
used for training. The training data is a total of 25.5 
hours long. In order to test the robustness of our model 
to channel variability, we also randomly selected 100 
turns (each turn is at least one second long) from the 
terms of 1995 through 2004 as the second test set.  

Our acoustic models are GMM-based, monophone 
HMMs. Each HMM state has 32 Gaussians Mixture 
components on 39 PLP coefficients (12 Cepstral 



coefficients plus energy, and Delta and Acceleration). 
First, we trained a general acoustic model using all the 
training data; then, we adapted it to Justice-specific 
models with each Justice’s data. Our language models 
were Justice-specific, phone-based bigrams. Both the 
acoustic and language models were trained using the 
HTK toolkit [11] and the CMU Pronouncing 
Dictionary [12]. Normal speech recognition was 
conducted eight times for each utterance, using the 
models of the eight Justices, with the highest-scoring 
model used to identify the speaker. The dictionary 
used for recognition contained only monophones; each 
monophone has a pronunciation of itself. Again, the 
HTK toolkit was used for the decoding. 

Our models achieved 98.0% accuracy on the 800 
randomly selected test segments from the 2001 term. 
The 16 errors (2.0%) are all “false errors”; either these 
segments contain significant overlaps between 
different speakers or high background noise, or they 
are too short (much less than one second). The test on 
the 100 turns from the 1995 to 2004 terms also showed 
perfect results, although this test data used different 
recording devices and was digititized at different 
sampling rates. Three of the 100 turns were not 
correctly identified, but all of them are “false errors”.  

 
 

3. EFFECTS OF SAMPLING RATES 
 
Our training data and first test set were extracted from 
the 2001 term and were sampled at 44,100 Hz; 
however, the arguments from earlier terms were 
sampled at either 44,100 Hz or 22,050 Hz. We 
therefore downsampled the data for both training and 
test. Table 1 shows the accuracies of the models that 
were trained on the same data set but with different 
sampling rates. The first test set (800 turns from the 
2001 term) was used for testing. The test turns were 
downsampled to the same sampling rate as the training 
data. 

The results in Table 1 suggest that the sampling 
rate of 11,025 Hz has the best performance. 
Surprisingly, a sampling rate as low as 2,000 Hz can 
achieve more than 90% accuracy. This result suggests 
that most of the inter-speaker variability is conveyed 
in frequencies below 1,000 Hz in the speech signal, at 
least in these recordings. 
 
 
 
 

Table 1. Effects of sampling rates. 
 

Sampling rate Accuracy  
2000 Hz (39 parameters) 92.9% 
4000 Hz (39 parameters) 96.4% 
8000 Hz (39 parameters) 97.6% 
11025 Hz (39 parameters) 98.0% 
22050 Hz (39 parameters) 96.4% 
44100 Hz (39 parameters) 94.8% 
44100 Hz (60 parameters) 96.8% 

 
 
Except for the final model, all the models in Table 

1 used 39 PLP coefficients, and the features were 
extracted using 12 filters spread over the frequency 
range from zero to the Nyquist frequency. The last 
model used 60 PLP coefficients (29 Cepstral 
coefficients plus energy, and Delta and Acceleration) 
and 32 filters from zero to the Nyquist frequency of 
22,050 Hz; it used almost the same mel-scale filters 
from zero to 11,025/2 Hz as the 11,025 Hz model, plus 
more filters on the higher frequencies. Table 1 shows 
that this model is still not as good as the 11,025 Hz 
model; these results suggest that there is no useful 
speaker information in frequencies above 5,500 Hz in 
these recordings, at least for the approach we used.   
 
 

4. INTER-SPEAKER VARIABILITY 
 
Since the GMM-based, monophone HMM models 
perfectly capture inter-speaker variability, we decided 
to investigate how and where the speakers differ, as 
seen by the models. We had two goals: to help design 
the prompt text for text-dependent speaker 
identification systems (the phones that are more 
distinctive among the speakers should be used); and to 
learn more about speaker variation and phonetic 
variation in general.  

To study which phones are more distinguishable 
among the Justices, we defined a distance score, D, 
based on the likelihood numbers from different 
speaker models. In the equation, D(pi, sj) is the 
distance score of the phone-token pi made by the 
speaker sj, and L(pi, Mj) is the likelihood score of pi 
when it is forced aligned using the model Mj, the 
speaker sj’s model. 
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We then calculated the Mean Distance Score for 

each phone type of each speaker. Mean(D(/a/, 
“Tom”)), for example, is obtained by averaging the 
distance scores of all the tokens /a/ from Tom; it 
measures the ‘deviation’ of Tom’s /a/ from the other 
speakers’ /a/. Figure 1 shows the average Mean 
Distance Scores of the eight Justices for each phone; 
these scores were calculated based on the 800 
utterances in the first test set. The higher the distance 
score, the more distinguishable the phone is among the 
eight Justices.  

 
Fig. 1. Phone variability measured by Mean Distance Score. 

 
 

Figure 1 shows that vowels carry more speaker 
variability than consonants; that the most variable 

phone is the phone UH (as in the word good); and that 
the velar nasal NG is more variable than the other two 
nasal sounds M and N. Further studies are needed to 
explain these results. 

 
 

5. FORCED ALIGNMENT 
 
Another major finding of this study is that accurate 
word alignment on long speech segments can be 
achieved by using the HTK toolkit and our acoustic 
models. Figures 2 and 3 show the forced alignment 
errors on speech segments that are between 10 to 40 
minutes in length. Figure 2 shows the difference 
between the forced aligned word boundaries and the 
hand-labeled word boundaries; the differences are 
consistently around 50 milliseconds along the time of 
word onset. Figure 3 displays the histogram of the 
differences.  
 

 
Fig. 2.Forced alignment errors at different word onset time. 
 
 

Since the speech segments contain pauses, noises, 
disfluencies, etc., and because the hand-labeled 
boundaries are not 100% accurate, the “true errors” of 
the forced alignment are shorter than 50 milliseconds.  
In fact, we found that most of the forced-aligned word 
boundaries are “perfect”.  



 
Fig. 3. Histogram of forced alignment errors. 

 
 

There are several possible reasons that our 
acoustic aligner works better than some others have in 
the past: 1) the training data is large and fairly clean; 
2) we used GMM-based, monophone models instead 
of triphone models; and 3) we corrected a rounding 
issue that arises when using the HTK toolkit to extract 
features. If the sampling rate is 11,025 Hz and the time 
step is set to 10 milliseconds, then the analysis window 
will move forward by 110 samples instead of 110.25 
samples at each step. If the speech segment is one hour 
long, the time difference between the original speech 
signal and the extracted feature vectors can be as long 
as eight seconds (0.25 samples x 360,000 = 90,000 
samples). We adjusted this time difference when 
conducting forced alignment.  

 
 

6. CONCLUSIONS 
 
GMM-based monophone HMM models can generate 
excellent results in Justice identification on the 
SCOTUS corpus. Most of the inter-speaker variability 
is conveyed in frequencies below 1,000 Hz in the 
speech signal; and modeling features extracted from 
the frequencies above 5500 Hz are generally harmful 
to speaker identification. Vowels carry more speaker 
variability than consonants; the most variable phone is 
the phone UH (as in the word good); and the velar 
nasal NG is more variable than the other two nasal 
sounds M and N. Not only do these results provide 

useful information for building robust speaker 
recognition systems, but they also help develop a 
better understanding of speaker variability in speech 
production. Our study also demonstrated accurate 
word alignment on very long speech materials, which 
is significant for many practical applications. 
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