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Abstract 
Focus, which is usually modulated by prosodic prominence, 
highlights a particular element within a sentence for emphasis 
or contrast. Despite its importance in communication, it has 
received little attention in the field of speech recognition. This 
paper developed an automatic detection system of prosodic 
focus in American English, using telephone-number strings. 
Our data were 100 10-digit phone number strings read by 5 
speakers (3 females and 2 males). We extracted 18 prosodic 
features from each digit within the strings and one categorical 
variable and trained a Random Forest model to detect where the 
focused digit is within a given string. We also compared the 
model performance to human judgment rates from a perception 
experiment with 67 native speakers of American English. Our 
final model shows 92% of accuracy in detecting the location of 
prosodic focus, which is slightly lower than the human 
perception (97.2%) but much better than the chance level 
(10%). We discuss the predictive features in our model and 
potential features to add in the future study. 
Index Terms: focus, prosody, machine learning, speech 
recognition, American English 

1. Introduction 
The main goal of communication is to deliver appropriate 
information to interlocutors. The information a speaker wants 
to convey needs to be structured systematically to facilitate 
communication. Consider the following brief dialogue: 

 
A: Is it May 6th today? 
B: No, today is the 7th.  

 
In B, today is is old information and 7th is new and corrected 
information that speaker B wants to convey. In this dialogue, 
7th is the most informative part and thus receives a focus, a 
discourse function highlighting a particular element in a 
sentence [1], [2]. Given the importance of focus in 
communication, a focused element normally triggers prosodic 
prominence accompanied by concomitantly increased duration, 
intensity, and pitch. It, thus, becomes prosodically distinct from 
its adjacent words [2], [3], [4], [5], and becomes highly 
identifiable in perception [6]. Although prosodic focus has been 
studied extensively for decades (e.g., [3], [7]), it has received 
little attention in the field of speech recognition. This study 
aims to build and evaluate an automatic detection system of 
focus because automatic detection of focus is expected to 
facilitate human-machine interaction.  

The success of previous studies on emotion recognition or 
speaker state and trait recognition has laid the foundation of this 
project. For example, [8] use hidden Markov models to classify 

seven emotions drawn from speech samples of five speakers. 
They extract pitch- and energy-related features from acted and 
spontaneous emotions and show that their model with global 
features correctly identifies emotions 86.8% of the time, which 
is higher than the human judgment (81.3%). [9] classifies 
speech emotions in two different corpora (one in Swedish, the 
other in English), using MFCC and pitch features in Gaussian 
mixture models, and show that the model trained with all 
features combined performed the best. [10] also classifies six 
emotion categories, using a hidden Markov model as the 
classifier and short time log frequency power coefficients 
(LFPC) as a feature. Their model correctly identifies 79.9% of 
Burmese utterances and 76.4% of Mandarin utterances, where 
the chance level is 16.67% (one out of six categories). Also, the 
challenge series on the emotion recognition, paralinguistics, 
and speaker traits at INTERSPEECH [11], [12], [13] (and 
subsequent challenges) promoted research on the field, showing 
that emotions and paralinguistic functions can be automatically 
detected.  

The success of previous studies motivated us to develop an 
automatic detection system of prosodic focus. Despite the huge 
success and progress that have taken place in speech 
recognition, machines have not yet been trained to recognize 
focused information within a sentence or a discourse, leaving 
room for improvement in human-machine communications. 
Since acoustic features and machine learning models have been 
effective in predicting emotions and other paralinguistic 
functions from speech signals, it is reasonable to believe that 
prosodic focus can also be automatically detected using a 
machine-learning technique. In pursuit of this goal, we 
investigate prosodic features and develop a classifier that 
automatically detects a prosodic focus within a sentence.   

2. Objectives 
We chose prosodic focus on phone number strings as our 
training data for the following reasons: (i) numbers are 
important in human-machine interactions, such as in dialogues 
between voice assistants and users (for example, consider this 
common voice command usage scenario: VA: “Timer for 13 
minutes, is this correct?” User: “No, timer for 30 minutes.”), 
(ii) syntactic and morphological strategies are ruled out when 
focusing a digit within a phone number string so that only 
prosodic modulation can be used, and (iii) all positions within 
a string are equally susceptible to focus, which enables us to 
examine if a model can predict a focus regardless of variable 
focus positions.      

To our best knowledge, this study is the first trial of 
building an automatic detection system of focus. Our objectives 
are to (i) extract and identify prosodic features that are most 
predictive of focus, (ii) train and evaluate a predictive model 
using those extracted features, and (iii) compare the 



performance of the trained model to humans’ perception rate of 
focus in phone numbers.  

3. Methods 

3.1. Data 

We collected the data set of prosodic focus in American English 
as a part of a larger project [14], [15], which aimed at 
investigating crosslinguistic commonalities and differences in 
focus. We elicited corrective focus, which corrects inaccurate 
information from the preceding utterance, using the following 
Q&A structure (the numbers are just for example): 

 
A: Is Mary’s number 887-412-4699? 
B: No, the number is 787-412-4699.  
 
After listening to a pre-recorded prompt question (speaker 

A in the above Q&A structure), five native speakers of 
American English (3 females, 2 males, mean age: 27.8 years) 
read 100 phone number strings, which were in the format of 
NNN-NNN-NNNN, that were different in only one digit from 
the preceding utterance, correcting the wrong information as if 
they were speaker B in the above dialogue. The participants 
were instructed to read the strings as naturally as possible.  

The read phone number strings were created by a Python 
script so that every string position equally included 10 digits 
(from 0 to 9) and each digit in every string position was equally 
given a focus to counterbalance the distribution of focus. We 
also asked to read each digit separated (for example, ‘2156’ as 
‘two one five six’ instead of ‘twenty-one fifty-six”) and 0 as 
“O” instead of “zero” for consistency.   

The recording session was carried out in a sound-attenuated 
recording booth with a Plantronics head-mounted microphone, 
and the recordings were saved into a laptop computer directly 
at a 44.1kHz sampling rate and with a 16-bit resolution.  

3.2. Features 

Each digit within the digit strings was manually aligned by one 
of the authors. We extracted 18 prosodic features from each 
digit using a Praat [16] script as described in Table 1.  

 
Table 1: Extracted prosodic features. 

 
When measuring pitch, we set the pitch range to 100Hz to 

500Hz for female speakers and 75Hz to 300Hz for male 
speakers to reduce pitch-doubling or -halving errors. A relative 
duration of a digit was calculated as a proportion of a digit 
within a given phone number (= duration of a digit / total 
duration of the entire phone number string).  

Besides the basic functionals such as mean, median, and 
standard deviation, we also measured the slope of the pitch 
contour and the excursion speed (Hz/sec) of each digit to 
capture the dynamic pitch patterns. When measuring the pitch 
slope, we implemented the method in [17] and as for the 
excursion speed, we implemented the method in [18].  

We also had one categorical variable, which was the 
corrected digit. Since English digits vary in the number of 
syllables (e.g., seven vs. one), which directly affects the 
duration features, we hypothesized that having the corrected 
digit as a feature might improve the performance of the model. 
It is, however, important to note that the information about the 
corrected digit did not lead to data leakage, since the task was 
to identify the position of the focused digit, (e.g., the third 
position in 215-123-4567), not to identify the focused digit 
itself (e.g., 5 in 215-123-4567). We dummy-coded the digit 
information with a binary vector (1, 0) and used those values as 
categorical variables.  

Since there were 10 digits in each phone number string, the 
number of acoustic features used was 180 with 500 examples 
(= 5 speakers x 100 phone number strings). To promote 
effective learning, we z-scored all acoustic features within each 
digit string. For example, we grouped the mean F0 values from 
all positions within a digit string together and z-scored the 
values. This is because prosodic features of focused positions 
are highly different from those of unfocused positions in 
American English (See Section 4), and the relative difference 
between the digits matters. We also imputed missing values in 
Python, where Praat failed to pitch-track due to too short 
duration or too much of air puff from a preceding consonant, 
with the median value of a feature within the given phone 
number string during this process, as imputing missing values 
is an important step for effective learning. The total number of 
features extracted was 190 (= 180 acoustic features + 10 
categorical (from 0 to 9) features). 

3.3. Model and feature selection 

For better accuracy and easier model interpretability, we 
selected Random Forest classifier as our modeling framework. 
Since we had many features compared to the limited number of 
examples in our data and some features are likely to be highly 
correlated (such as the mean and median pitch values), it was 
important for us to select features that are informative enough. 
We measured the degree of correlation among the features 
using the basic correlation function in Python and dropped 
features that had a correlation higher than 0.5 before training. 
To evaluate the generalizability of our model, we performed 
leave-one-group-out cross validation (CV), grouping all tokens 
produced by one speaker as one group. This cross-validation 
technique was essential to prevent potential data leakage that 
could have been caused by random train, test splits of the 
examples produced by the same speaker. All processes in the 
pipeline were performed with scikit-learn [19] in Python.   

4. Feature analysis 
Figure 1 shows the prosodic differences between focused and 
non-focused digits. Focused digits have higher values than 
unfocused digits for all of the example features shown in Figure 
1, except the relative duration. This means that focused digits 
were expressed with a higher pitch, intensity and a steeper pitch 
slope.  
 

Low level 
descriptors 

Functionals 

Fundamental 
frequency (F0) 

Mean, median, minimum, 
maximum, Inter-quartile ratio 

(IQR), Difference between max and 
min, Standard deviation, Pitch 

slope, Excursion speed  
Intensity Mean, median, minimum, 

maximum, IQR, Difference between 
max and min, Standard deviation 

Duration Absolute duration, relative duration  



 

Figure 1: Mean and standard error range of the 
example features. Rel. Duration is for relative duration. 

To examine if these differences are significant, we built 
linear mixed-effects models, with the feature values as a 
dependent variable, the focus condition as a fixed-effect 
predictor, and the speakers as a random effect, using lmerTest 
[20] in R. The models estimate that focused digits have higher 
max pitch values (Estimate coefficient = 4.92, t = 2.869, p = 
0.004), higher mean intensity (Estimated coefficient = 0.36, t = 
2.017, p = 0.044), and steeper pitch slopes (Estimated 
coefficient = 23.469, t = 2.316, p = 0.021), but do not have 
longer relative durations (Estimated coefficient = 0.0001, t = 
0.084, p = 0.933). The reason for relative duration was not 
significant seems to be because string-final digits (NNN-NNN-
NNNN) were subject to final lengthening. Since we only 
separated focused digits from the others in this analysis, string-
final digits seemed to obscure the difference between focused 
and unfocused digits. Table 2 displays the models’ random 
slopes by speaker, showing interspeaker variation in our data. 

Table 2: Random slopes of the models by speaker. F1-
3 are female speakers, and M1-2 are male speakers; 
female speakers show higher values for max F0 and 

pitch slopes.  

Model F1 F2 F3 M1 M2 
Max F0 (Hz) 211.8 225.1 226.3 120.4 126.0 

Mean Intensity (dB) 62.2 75.9 75.2 76.0 77.5 
Pitch slope (Hz/sec) 154.1 132.5 150.9 90.2 118.4 
Relative Duration 0.11 0.11 0.09 0.11 0.1 
 

5. Human perception 

5.1. Participants and procedure 

The human perception data were adapted from [14]. 67 native 
speakers of American English (mean age: 19.5 years, standard 
deviation: 1.1) were recruited via Qualtrics, an Online platform 
for performing experiments. The participants were all 
undergraduate students who were studying at the University of 
Pennsylvania and their participation was compensated for a 
course credit.  

We randomly selected 100 telephone digit strings produced 
by the five speakers (Section 3.1) and asked the listeners which 

digit sounds like corrected within a given phone number string. 
To make sure that the participants understood the purpose of the 
experiment, we provided a brief explanation about corrective 
focus before beginning the experiment. Only the 
decontextualized phone number strings were given to the 
participants, and the participants were able to select only one 
digit out of ten. They were able to listen to the stimuli as many 
times as they like.  

5.2. Results 

The listeners were able to correctly identify the focused digit 
97.2% of the time. The accuracy slightly varied depending on 
where focus falls within a given string. The listeners were able 
to identify prosodic focus 99.1% of the time when it falls on the 
eighth digit, whereas they correctly identified focus on the 
fourth digit 93.8% of the time (See Table 5 in Section 6.3 for 
the confusion matrix). The listeners’ individual scores varied 
from 89% to 100%, but in general, the human listeners’ 
perception was highly accurate.  

6. Classification results 

6.1. Selected features 

Table 3 shows the list of selected features in the order of feature 
importance in the model. Dropping the features that had a 
correlation higher than 0.5 left us 83 features, where 73 were 
acoustic features and 10 were the categorical feature for the 
corrected digit (from 0 to 9). Among 73 features, all 10 median 
F0, IQR F0, median Intensity, max Intensity, and IQR Intensity 
features (from all positions) were selected, and also included 
were one Max – Min F0 feature (from Digit 3), seven minimum 
Intensity features (from Digit 1, 2, 3, 5, 6, 7, 0, where 0 means 
the 10th position), six Max – Min Intensity features (from Digit 
2, 4, 5, 7, 8, 0), four Duration features (from Digit 3, 6, 7, 9), 
two Relative Duration features (from Digit 1 and 5), and three 
Pitch slope features (from Digit 4, 5, 7). We summed the feature 
importance of a given feature of the selected positions and 
averaged the summed feature importance across the five cross-
validation folds in Table 3.  
  

Table 3: The feature importance of selected features. 

 
The selected features suggest that median F0 values of the 

digits were the most predictive feature, followed by three 
intensity-related values (median, IQR, and Maximum 
intensity). The only categorical variable, Corrected digit, was 
also important, but not as predictive as pitch or intensity.  

Pitch slope Rel. Duration

Max F0 Mean Intensity

Corrected Uncorrected Corrected Uncorrected

73.0

73.2

73.4

73.6

0.102

0.103

0.104

0.105

175.0

177.5

180.0

182.5

110

120

130

140

focus

va
lu

e

focus Corrected Uncorrected

Name Mean feature importance 
across CV folds 

Median F0 0.132 
Median intensity 0.131 

IQR intensity 0.129  
Maximum intensity 0.127 

IQR F0 0.125 
Minimum intensity 0.094 

Max – Min intensity 0.08 
Duration 0.055 

Corrected digit 0.05 
Pitch slope 0.038 

Relative duration 0.028 
Max – Min F0 0.012 



6.2. Model performance 

Table 4 summarizes the model performance for each CV fold. 
 

Table 4: The performance of the proposed model (macro-
average values).  

Test CV Accuracy Precision Recall F1-score 
F1 0.92 0.92 0.92 0.92 
F2 0.90 0.91 0.90 0.90 
F3 0.95 0.95 0.95 0.95 
M1 0.95 0.95 0.95 0.95 
M2 0.88 0.88 0.88 0.88 

Mean 0.92 0.922 0.92 0.92 
 

Our model could correctly classify focused digits about 
92% of the time, which was lower than the human perception 
(97.2%) but was well above the chance level (10%, one out of 
the ten digits). The performance of our model is considered 
high, given that we had only 400 tokens for training per each 
CV fold. The model’s performance varied depending on the test 
set (i.e., which speaker’s tokens were presented as the test set) 
from 88% to 95%. It seems like the model performed relatively 
poorly when the test set was tokens produced by the second 
male speaker. This might suggest that this speaker’s prosodic 
features were less similar to the ones of the other speakers in 
the training set and there is a between-speaker variation in 
marking prosodic focus. Since the goal of our project was to 
develop an automatic detection system of prosodic focus, not to 
investigate interspeaker variability in marking prosodic focus, 
we leave this observation for future study.   

6.3. Comparison with human perception 

In this section, we compare the model performance to human 
perception (Section 5.2). Table 5 displays the confusion 
matrices of corrective focus of the listeners and our model.  

Table 5: Confusion matrices of prosodic focus. 
Numbers in gray indicate correct identification rates 

(%). (Top: humans, bottom: machine) Correct 
answers are in the first column. For the machine 

performance, we calculated the rates from the sum of 
all CVs. 

Perceived/Predicted 
 1 2 3 4 5 6 7 8 9 10 

1 95.4 2.1 1.6 0.1 0.3 0.1 0.0 0.3 0.0 0.0 
2 0.6 98.7 0.1 0.0 0.3 0.3 0.0 0.0 0.0 0.0 
3 0.3 0.4 97.9 0.9 0.3 0.1 0.0 0.0 0.0 0.0 
4 0.3 1.9 1.3 93.8 1.3 0.1 0.6 0.4 0.1 0.0 
5 0.7 0.0 0.3 0.4 97.9 0.3 0.3 0.0 0.0 0.0 
6 0.0 0.1 1.6 0.3 0.3 96.0 0.7 0.9 0.0 0.0 
7 0.3 0.0 0.1 0.0 0.1 1.0 97.5 0.9 0.0 0.0 
8 0.1 0.0 0.3 0.1 0.1 0.0 0.0 99.1 0.1 0.0 
9 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.1 97.1 0.1 

10 0.3 0.1 0.3 0.0 0.1 0.0 0.0 0.3 0.1 98.7 
1 86.0 4.0 0.0 4.0 2.0 0.0 2.0 0.0 2.0 0.0 
2 2.0 86.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1.0 
3 2.0 0.0 94.0 0.0 2.0 0.0 0.0 0.0 2.0 0.0 
4 0.0 0.0 0.0 94.0 0.0 2.0 0.0 2.0 2.0 0.0 
5 0.0 0.0 2.0 2.0 94.0 0.0 0.0 0.0 0.0 2.0 
6 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 

7 0.0 0.0 0.0 0.0 4.0 0.0 88.0 2.0 2.0 0.0 
8 4.0 2.0 0.0 0.0 0.0 0.0 0.0 96.0 0.0 2.0 
9 0.0 0.0 4.0 4.0 2.0 0.0 0.0 4.0 88.0 2.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 94.0 
 

The model performance is generally lower than the human 
perception, but the model performed better than the listeners in 
detecting prosodic focus in position 6 (human: 96%, machine: 
100%) and comparable in position 4 (human: 93.8%, machine: 
94%). In general, our model performed better for the boundary 
positions, such as positions 3, 6, and 10 than boundary-internal 
positions. This seems to be because the boundary digits were 
longer than boundary-internal digits due to final lengthening, 
making the duration-related features more robust for machine 
learning. However, when compared to the human listeners, the 
model performed poorly in detecting focus in the first digit 
group (NNN-NNN-NNNN), suggesting that the prosodic 
features for corrective focus might be weak in the first digit 
group.   

7. Discussion and Conclusion 
In this paper, we built an automatic detection system of 
prosodic focus and compared its performance to human 
listeners. We used simple and interpretable features for training, 
which could be adapted in developing a focus detection system 
in regular utterances and in large-scale speech corpora, and we 
rather unfolded the characteristics of focus in American 
English. Our model correctly identified the focused position 
within a phone-number string 92% of the time. This 
performance was slightly lower than the human performance 
(97.2%), but well above the chance level (10%). Our model 
revealed that the median F0 value of each digit was the most 
predictive prosodic feature, followed by median intensity.  

The fact that the listeners were able to correctly identify 
97.2% of the time suggests that detecting prosodic focus in 
American English is a relatively easy task. Even though our 
model’s performance was well above the chance level, our 
model’s performance was 5% lower than the human accuracy. 
This might be because we did not have enough examples, 
compared to the complexity of our model. Given that the 
accuracy in the train sets was always 100% (high variance), 
adding more training examples may help to improve the model 
performance and increase the generalizability of the model. 
However, it might be also the case that prosodic features were 
not enough in detecting prosodic focus and native speakers 
might listen to other cues than prosodic features, for example, 
voice quality or spectral information. In particular, for the first 
digit group (NNN-NNN-NNNN), the listeners were able to 
correctly identify focus around 97% of the time, but our 
model’s performance was around 89% (Table 5). This might 
indicate that there are other acoustic features that the native 
speakers are listening to. In this study, we only included 
prosodic features, but adding other features, such as phonation 
cues and spectral ones, and experimenting with them might also 
improve the model performance. We plan to examine both 
possibilities in the future study. We also plan to extend the 
project to regular sentences and natural conversations. 

 This study showed that prosodic focus could be 
automatically detected with a decent accuracy. We believe that 
automatic detection of focus would improve human-machine 
communication and speech recognition and help to better 
understand natural communication.  
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