CHAPTER 9 .
1? GNALLY PUBUSHED :w_ K4

{443 A L — ¢t
On a Class of

kew Distribution Functions!

ibution func-
tions that appears in a wide range of empirical data—-partxcularly data
describing sociological, biological and economic phenomena. Its ap-
pearance is so frequent, and the phenomena in which it appears so diverse,
that one is led to the conjecture that if these phenomena have any prop-
erty in common it can only be a similarity in the structure of the under-
lying probability mechanisms. The empirical distributions to which we
shall refer specifically are: (A) distributions of words in prose samples
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by their frequency of occurrence, (B) distributions of scientists by num-
ber of papers published, (C) distributions of cities by population, (D)
distributions of incomes by size, and (E) diswributions of biological
genera by number of species. N

No one supposes that there is any connexion between horse-kicks suf-
fered by soldiers in the German army and blood cells on a microscope
slide other than that the same urn scheme provides a satisfactory ab-

stract model of both phenomena. It is in the same direction that we shall
look for an explanation of the observed close similarities among the five
classes of distributions listed above.

The observed distributions have the following characteristics in common:

(@) They are J-shaped, or at least highly skewed, with very long upper
tails. The tails can generally be approximated closely by a function of
the form

(1.1) f(i) = (a/i*W",

where a, b, and k are constants; and where b is so close to unity that in
first approximation the final factor has a significant effect on [(i) only
for very large values of i. Thus, for example, the number of words that
occur exactly i times in James Joyce's Ulysses is about a/z ; the num-
ber of authors who published exactly x papers in Econometrica over a
twenty-year period is approximately a/i*; and so on.

1] have had the benefit of helpful comments from Messrs. Benoit Mandelbrot,
Robert Solow and C. B, Winsten. I am grateful to the Ford Foundation for a
grant-in-aid that made the completion of this work possible.
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(b) The exponent, k, is greater than 1, and in the casés of word fre- .

quencies, publication, and urban populations is very close to 2.2

the function (1.1) describes the distribution not mefei’y in the tail bur
also for small values of i. In these cases the ratio f(2)/f(1 ) isg ene:a!ly

while f(1)/n, where n=Z/(i), is generally in the neighbourhood of
T .
one-~half.
Property (a) is characteristic of the '‘contagious”’ distributions—for

example the negauve bmomxal as it approaches its limiting form, Fisher’s

Aubauuuuu. se of the negauve
n

lv ;n rhp ]Imlf‘n(l
7 &

case of the log series); and if the distribution has a long tail, so that the
convergence factor, b, is close to unity, f(2)/f(1) cannot be less than
one-half. Hence the negative binomial and Fisher’s log series distribu-
tions do not provide a satisfactory fit foi data posseczing property (a}
together with either (&) or (c).}

It is well known that the negative binomial and the log series distribu-
tions can be obtained as the stationary solutions of certain stochastic

series a
binomial, k& cannot exceed unity (and equals unity o

processes. For example, J. H. Darwin {1953) derives these from birth
and death processes, with appropriate assumptions as to the birth- and
death-rates and the initial conditions. In this paper we shall show that
stochastic processes closely similar to those yielding the negative bi~
nomial or log series distributions lead to a class of functions having the

three properties enumerated above. This class of functions is given by
(1.2) f(i) = AB(i, p + 1),

where A and p are constants, and B(i,p + 1) is the Beta functionof i, p. + 1:

TECp + 1)

—— (0< § ).
r‘(i+p+1)( CHO<p <)

1
(1.3) BGi, p+ 1) =j A1 - A)PdN =
: 0

Now it is a well-known property of the Gamma function (Titchmarsh,

1939, p. 58) that as { — =, and for any constant, &,
') /
1.4 T~k
(1.4 I'G + k) ‘

1See Zipf (1949) for numerous examples of distributions with this property.

3The contrasting characteristics of distributions for which the log series pro-
vides a satisfactory fit and those, under consideration here, for which it does
not are illustrated by examples (i) and (ii), respectively, in Good (1953).

(c) In the cases of word frequencies, publications and biological genera, .
l‘ .

-
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(1.5) fG)~ T + i PV,

Therefore, the distribution (1.2) approximates the distribution (1.1) in
the tail (more precisely, through the range in which the convergence fac-
tor of the latter is close to one). Further, if p is positive, & will be
greater than 1, as required by (b); and if p is equal to 1, &£ will be equal
to 2. It is easy to see that in the latter case we will have

0
(1.6) fiy= —— )= 1,
it + 1) &~
i=]1
so that f(2)//(1) = %; and f(1)/n =%, as required by (c).

In the remainder of this paper I propose: (a) to describe a stochastic
process that leads to the stationary distribution (1.2); (b) to discuss
some generalizations of this process; and (c) to construct hypotheses as
to why the empirical phenomena mentioned above can be répresented, ap-
proximately, by processes of this general kind. Before proceeding, I
should like to mention two earlier derivations, one of (1.2), the other of
{(1.1), that I have been able to discover in the literature.

Some thirty years ago, G. Udny Yule (1924) constructed a probability
model, with (1.2) as its limiting distribution, to explain the distribution
of biological genera by numbers of species. le also derived a modified
form of (1.2), replacing the complete Beta-function of (1.3) by the incom-
plete Reta-function with upper limit of integration & < 1. (This modifi-
cation has the same effect as the introduction of the convergence fac-
tor, b, in (1.1)—it causes a more rapid decrease in f(i) for very large
values of i; cf. also Darwin (1953, p. 378).) It seems highly appropriate
to call the distribution (1.2) the Yule distribution.

Because Yule's paper predated the modern theory of stochastic proc-
esses, his derivation was necessarily more involved than the one we
shall employ here. Moreover, while the assumptions he required are
plausible for the particular biological problem he treated, the correspond-
ing assumptions applied to the four other phenomena we have mentioned
appear much less plausible. Our derivation requires substantially weaker
assumptions than Yule’s about the underlying probability mechanism.

More recently D. G. Champernowne (1953) has constructed a stochastic
model of income distribution that leads to (1.1) and to generalizations of
that function. Since the points of similarity between his model and the
one under discussion here are not entirely obvious at a first examination,

I shall consider their relation in a later section of this paper.

II. THE STOCHASTIC MODEL

For ease of exposition, the model will be described in terms of word

frequencies. In a later section, alternative interpretations will be pro-
L ]
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vided, Ou i is | H
...... Our present interest is in the k

would lead to (1.2).

Consider a book that is being written, and that has reached a length of’

k words. We designate by f(i, &) the number of different words that have

OFcurred exactly 7 times in the first £ words. That is, if there are 407

different words that have occurred exactly once each, then /fl, k) = 407
Assumption I. The probability that the (k + 1)-st word is a word tb;'t

bas already appeared exactly i times is proportional to if(i, k)—that i
oporiiona:c lo /2, R)—tnat is,

to the tc?ta'l number of occurrences of all the words that have appeared

exactly i times. o

Note thar thie acsasumneian
.3 i

NOT€ taat this assumption h weaker than the

S iS muCa WEaxker tnan tne assumpiion (i’):
that‘ the Pr_obabxhty a particular word occur next beproportional to the
number of its previous occurrences. Assumption (I”) implies (I), but the

converse is not true. Hence we leave open the possibility that, among
. . ’

all words that have appeared i times the probability of recurrence of

some may be much higher than of others.

Assumption Il. There is a constant probability, O, that ¢

CU7ES DeILLy, Wy &

be (k + 1)-st

word be a new word—a word that has not occurred in the first £ words.

Assumptions (I) and (II) describe a stochastic process, in which the

probabilitv that a particular d : :
p ity that a particular word will be the next one written depends on

whét words have been written previously. If this process correctly de-
scribes the selection of words, then the words in a book cannot b); re-
g:a:ded as a random sample drawn from a population with a prior distribu-
tion. The reasonableness of the former, as compared with the latter type
of explanation of the observed distributions, will be discussed in §IV.} P

From (I), it follows that

2.1) ElfG, &+ DI =[G, k) = KGR = 1)f(i = 1, k) = if(i, k)}
(=200, k+1),

for if the (k + 1)st word is one that has previously occurred (i — 1) times
[, k& + 'l) will be increased over f(i, k), and the probability of this by'
assumption (I), is proportional to (i — 1){(i — 1, k); if the (k + 1)st wor,d is
one that previously occurred i times, f(i, £ + 1) will be decreased, and

?he probability of this, by assumption (I}, is proportional to if(, k); while
in all other cases, [(i, k + 1) = [(i, k).
From (I) and (II) we obtain similarly

2.2) 41, &+ D= f(1, &) = 0 ~ K(R)f(1, k) (0< & < 1).

. Since we will be concerned throughout with *‘steady-state’’ distribu-
tions (?S defined by equation (2.8) below), we replace the expected
vatlues in (2.1) and (2.2) by the actual frequencies. (Alternatively, we
might replace frequencies on the right-hand side of the equation by p'rob-
abilities.) That is, we write, instead of (2.1) and (2.2),
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(2.3) ll(i» k + 1)~ II(!) é)g k:(‘-’-)!(l - 1)/(1 -1, ""')"' 1[’(3’ "3)2
(i .9 1)
S Lyeaay R T 1),
2.4) (1, &+ 1) = f(1, k) = o = KGR)(L, &),

where the f’s now represent expected values.
Now, we wish to evaluate the factor of proportionality K(k). Since
K(k)if(i, k) is the probability that the (k + 1)st word is one that previously

occurred i times, we must have

3 )
@.5) D KRiftiy k) =K(k) D ifGy k)= 1 - o,
i=1 i=1
k
But Y‘ if(i, k) is the total number of words up to the kth hence
!=l N
k- ‘
(2.6) }“,/(,, k) =k,
i=
and
2o = vred n 1 - a
2.7 Klk)= ——.

Substituting (2.7) in (2.3) and (2.4), we could solve these differential
equations explicitly. We can avail ourselves, however, of a simpler—

ehavah nanerisoral; ehad § A3 eh 1. ad
ulvubﬁ ﬁGu'A’lstﬁhS—meutGu i0r uisco'v'efiﬂb e SG;utAGﬂS, and can then

test their correctness by substitution in the original ‘equations. Con-
sider the ‘'steady-state’’ distribution in the following sense. We assume
GG, k+1) k+1
(2.8) f ’, = for all i and k;
fG, k) k
so that all the frequencies grow proportionately with &, and hence main-
~tain the same relative size. (Since we must have f(Z, k)= 0 for i > &,
equation (2.8) cannot hold exactly for all  and &, But as explained above,
we are concerned at the moment with heuristic rather than proof.)

Feam {9 QY ie fallawc ehas
L IOM (£ .0/ it IC1:OWS taal

fG, k) f(i, k +1)
fi—=1,k) fti-1,k+1)
where B(i) does not involve k. Hence, the relative frequencies, which we

will designate by f*(i), are independent of k. Substituting (2.7), (2.8) and
(2.9) in (2.3), we get

2.9

= B(),

R+ 1 ) (1-x)(@E-1)
2.10 ) k)=
@0 ( 8 { B

i i - i} {(i, k).
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Cancelling the common factor, and solving for (1), we obtain .
@.11) Bl Q-a)E-1) IMO) (=2 i
1 i) = i=2,00., k5
YT a-wi A= e
For convenience, we introduce : .
1 .
(2.12) P=1 (1<p <) -

Since f*(i) =B@)f*@ - 1)=PGE).BGE - 1)...8(2)f*(1), we obtain from
(2.11) and (2.12)

-1D)@E-2)...2.1 rer 2
@) fo=- —- D2 S A A

i+pii+p—1)...{2+p) Ii+p+ 1)
pYi+p p P

(1+p)Bl,p+ D 1) (i=2y...,%)

-~
1
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)
[o]
—
e
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w
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-
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But (2.13) is identical with (1.2) if we take A = ]"(1)(1 + p).
That (2.13) is in fact a solution of (2.3) can be verified by direct sub-
stitution. Moreover, it is in the following sense a stable solution. Sup-

pose that {2.11) is not satisfied, Whatever be the values of the f(i, ) for
a given k, we may write without loss of generality

e fG, k) (1-0)@E=-1)

(2.15) =

fG=1,k) (1-)i+1+e,k)’
where ¢(i, k) is some function of i and k. If we now divide both sides of
(2.3) by f(i, k) and substitute (2.15) in the right-hand side of the result-
ing equation, we obtain after simplification
G, k+ 1) k+1+e(,k)
(2.16) f : = .
[, k) k

Hence the ratio of f(i, & + 1) to f(i, k) will be greater than (k + 1)/k if

e(i, k) is positive, and less than (k + 1)/k if (i, k) is negative. Since

A
R .
new words are introduced at a constant rate, Z/(i, k) must be propor-

1
tional to k; therefore, by (2.16), we will have
k+1 ko4 k#] 1 k
(217 ) G, k+ D= - Z fli b =7 1 i, )i, k) = 0.
l=l ilm

Ve may interpret the three equations, (2.15)=(2.17), as follows. In an
average sense, the frequencies will grow proportionately with £ If a
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‘pmticular frequency is *‘too large'’ compared with the next lower fre-
quency (e(i, k) negative in (2.15)), it will grow at a rate slower than the
averabe, if it is *"too small’’ (¢(i, k) positive), it will grow more rapidly

lan ta€ average.
It remains to be shown that f*(i) = B(i, p + 1)/*(1) is a proper distribu-
k
tion function. In particular, we require that Ziﬂ(:, p + 1) converge as

But by (1.4),

00

(2.18) Y iBG, p+ 1)~ ii PN P
i=1 _ “t
Hence, by the usual ratio comparison test, 5—‘ iB(i, p + 1) converges for
1
p > 1, as required.
From the definition of G the total number, ng, of different words will
be &k; while the total number of word occurtences is k& That is

k k
(Z2.19) ng = ! (1, R)=UR = U : 1f(z, R).
i=] i=1

Returning to (2.4), and using (2.8), we get

2.20 (k“ ) 1y = - = 1y
(2.20) . ff)= T/ )
whence

ko
(2.21) [ P

2-¢ 2-a

From (2.12) and (2.21), and by successive application of (2.11), we
can compute the values of p, f*(1)/nx, {*(2)/nk, {*(3)/n4, etc., for given
values of & (Table 1).

Thus far we have considered the case where'(x, the rate at which new
words are introduced, is independent of k. We can easily generalize to
the case where & is a function of k& by making the appropriate substitu-
tion in (2.4). The equations can then be solved directly, but the method
employed to obtain a '‘steady-state’’ distribution is not applicable, since
it is not easy to define what is meant by the steady state in this more
general case. We will content ourselves with some approximate results
for two special cases. These special cases will give us insight as to

T e

TABLE 1 . ¢
a 0 £ (1) np (2Y ne 1*(3Y/n2
f: / 112 ng '3/ ne
0.0 1 0.500 0.167 0.083
0.1 1.11 0.527 0.169 0.082""
0.2 1.25 0.556 0.171  |. 0.080
0.3 1.43 0.588 0.171 0.077
0.5 2.00 0.667 0.167 0.067 °
0.7 3.33 0.769 0.144 ©0.046
0.9 10.00 0.909 0.076 : 0.012

Lhawoe » Aiceeshas frrmntinn may ariea which fae amall o
1iOW a uloutuwuuu undcliocn may arisc wnusu, 10f Sinaas

be approximated by (1.2), with 0<p < 1.
Case I. Suppose the system to be in the steady state described by

7 12N

(4.1)) Wl(ﬂ R. = Ro, 81’10 that the IIOW 0[ new WOIQS suaaemy ceases, sO

that 0((k) = O for & > k,. We will now have K(k) = 1/k for k > kg, and (2.4)

becomes
( 1\ k-1
(2.22) !(17 k+1)=I1-~ .f(l; k) = ——./(1;- k)'
\ &/ E
We define
..... . fG, R+ 1) R
(2.23) ()= ———" (i=2,...,k+1)
U T R
q:ﬂf’ﬂ MA NAN TrNr, c ars "\Blnl_\ Iﬂ'FAAIlI'AA wnro miict L.’l'vA
Since no new words are being introduced, we must have
k k
(2.24)  nk = f(1, k) + Z/(i, Ey=[(1, k+1)+ Z/(i, kE+1)
=2 §=2
(k-1) k
= — /1, B+ Zy(z’)/(i, k),
=2
whence
k
2 b =16, b
=2 1 f(1, k) .
(2.25) =2 -
& kE &
D G b 2 M, k)
i=2 =2
Let us define next
i, &) (i-1)
(2.26) BG) = f -

fi—-1,k)  (1+py)

(where we suppose that p; changes only slowly with k). Instead of (2.3),

s




we have

1
2.27) G, k+ D)= fG, £ =~ = DY = 1, &) = ifGi, B,

(2.28) i)~ 1= %l(i +pi) =i,
whence

2.29) pi = k(y(i) - 1),

and

s
S T k(y(i) - DfG, k)
-

230) 3o 2 MLk fak)
’ ' k E & e~ (1, k)
D i, B L)
i=2 i=2
Define
(2.31) by = (1, k)/np.
Then
(2.32) F= ' and o< p < oo
1- b,

Proceeding heuristically, we can see that after & becomes zero, f(1, k)
will begin to decrease with &, and the value of p; will be larger the
larger is i. For small values of i, we will have p(i) < p, and for large
values, p(i) > p. lHowever, the tail of the distribution will be affected
only slowly by the change in 0. Hence, we may suppose that lim p(i) = p,,

irkg

where p, is p(k,). On the other hand, since the weighted average in (2.29)
is heavily influenced by the large frequencies for small values of 7, p;
will be only slightly less than p. Hence we may expect the distribution
to take the form of a slightly curved line on a double-log scale, with a
slope of ~(p + 1) at the lower end, and a slope of —(p, + 1) at the upper
end. If p,> 2, then Zif(i, k) will converge. An example of such a dis-
tribution will be given in §IV.

Case ll. A second approximate solution can be obtained if we assume
that 0 decreases with &k, but very slowly. By definition, we have & =
dny/dk = n’. The condition for a steady state (all frequencies increasing
proportionately) is now

(2.33) fG, k+ 1) =1+ (2" /np)lf(i, k). «
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Substituting as before, (2.7) and (2.33) in (2.3), we again obrain (2.13),
where p is now given by '
n’k 1
(2.34) p=—-—
ng (1-n")

.

The slope obtained in the derivation for constant o has now been
multiplied by the factor (n"k)/ng, which for monotonically decreasing d is
less than one. Hence, the effect of a decrease in the rate of introduction
of new words is to lengthen the tail of the distribution, as was also true
in case I. If the new value of p is less than one, we do not have a proper
distribution function (see equation (2.18)), hence the equation can hold

only for small and moderate values of 7, and there must be a curve (on a

logarithmic scale) in the tail of the distribution.

III. AN ALTERNATIVE FORMULATION OF THE PROCESS

There are some alternative ways for deriving the relation (2.13). One

of these will be useful to us when we come, in the next section, to a
more specific discussion of word frequencies and frequencies of publica-

tions. Moreover, this derivation avoids the difficulties we have en-
countered in the definition of *'steady state.”’
Equation (2.10) may be written

(3.1) 0=(1-0){(i = 1)f*i-1)=if*Dl - [*@) (= 2,..., k)

where we have again written f*(i) for f(i, k).
\
7y

Similarly, from (2

’

4 we oheain
x w<& Ootain

(3.2) 0=1~(1-a)*1)-/*1).

These two equations may be interpreted as follows. We consider a
sequence of £ words. We add words to the sequence in accordance with
assumptions (I) and (II) of $II, but we drop words from the sequence at
the same average rate, so that the length of the sequence remains k. The
method according to which we drop words is the following:

Assumption Ill. If one representative of a particular word is dropped,
then all representatives of that word are dropped, and the probability
that the next word dropped be one with exactl

y i representatives is f*(i).
This assumption would be approximately satisfied, for example, if the
representatives of each word, instead of being distriouted randomly
through the sequence, were closely ‘bunched.’ This possibility is con-
sistent with assumption (I).
Equation (3.1), in our new interpretation, may be regarded as the
steady-state equilibrium of the stochastic process defined by

(3.3) fG, m+ 1)~ (i, m)= (1~ = (i ~ 1, m) = ift, m)) - (i, m),

where m is now not the total number of words (which remains a constant,
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1 ar
trary sequence of k words. Since the & of this process; w like that of
$II, remains constant, the ordinary proofs of the existence of a unique
steady-state solution will apply (see Feller, 1950, p. 373), and we avoid
the troublesome questions of rigour that confronted us in §II.

s AN

The solution of (3.1) and (3.2) is, of course, again given by

'@ A-0)Fi-1)
(2.11) — = =,
[*Gi~-1) 1+(1—-)
If we were to replace the last tetms of (3.1) and of (3.2), respectively,
by terms corresponding to the usual form of the death process, we wou

have (cf. Darwin, 1953, p. 375; and Kendall, 1948)

(3.4) 0=0-wiiE-1y 4O} = lif*() = (i

(3.5) 0=1-(1~a)*1)-[/*1)~2/*2)."

(3.6) , = . ,

which is Fisher’s logarithmic series distribution.

Since the log series distribution is a limiting case of the negative bi-
nomial, we may ask whether there is a distribution that stands in the
same relation to the latter as (2.11) stands in relation to (3.6). We can
obtain such a distribution by a modification of the birth process in (3.1).
Ve assume now that the birth-rate is the sum of two components—one
proportional to if(i), the other proportional to f(i). In place of (3.1) we
have

1- )k
(3.7 0= (_,__E(l_ -1+ C)f‘(i -D-(G+ c)/*(i)] - [*)
k+c

(c a constant),

the solution of which is

5 M) Mi-1+¢) (i-1+¢)
G.8) /*(i—l)-l\(i+c)+l_(i+c+1/)\)'
where A =k(1 -~ &) (k + c).

A rather remarkable property of (3.8) is that in the tail it still has the
limiting form (1.1) with & = 1. Ience for 0 and c small, this generalized
Yule distribution will still possess the three properties listed in the in-
troduction. The fact that a reasonably wide range of variation in the as-
sumptions underlying the stochastic model does not alter greatly the form

.
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.

of the distribution adds plausibility to the use of such stochastic ptoe-'
esses to explain the observed distributions. Our next task is to con-
sider these explanations in more detail.
IV. THE EMPIRICAL DISTRIBUTIONS .
In this section I shall uy to give theoretical justifications for the ob-
served fit of the Yule distribution to a number of different sets of em-

A. Word Frequencies. A substantial number of word s have been

vord ¢
made, in English and in other languages (see Hanley, 19 7, Thorndike,
1937; Yule, 1944; Zipf, 1949; and Good, 1953). Equation (1.'6') provides
a good fit to almost all of them. When the more general function, (1.2),
is used, the estimated value of p is always close to 1. When a conver-
gence factor, &, is introduced to account for the deficiency in frequencies

for very large values of 7, the estimated value of b is also very close to

onnte
Luliv

- Good (1953), for instance, applies (1.6) multiplied by a convergence
n )

factor to the Eldridge count, and obtains b = 0.999647.

Lidrid O

These regularities are the more swprising in that the vario
refer to a quite heterogeneous set of objects. In the Yule and Thorndike
ts, in ¢ torms are counted with the root word; in most of the
other counts each form is regarded as a distinct word. The Yule counts
include only nouns; the others, all parts of speech. The Dewey, Eldridge
and Thoradike counts are composite—compiled from a large number of
separate writings; most of the others are based on a single piece of con-
tinuous prose. I would regard this heterogeneity as further evidence that
the explanation is to be sought in a probability mechanism, rather than in
more specific properties of language; but at the same time, the hetero-
geneity complicates the task of specifying the probability mechanism in
detail. I shall avoid questions of *‘fine structure’’—which would require
an expertness in linguistics that I do not possess—and confine myself
to three broad problems: (1) the distribution of word frequencies in the
whole historical sequence of words that constitutes a language; (2) the
distribution of word frequencies in a continuous piece of prose; (3) the

distribution of word frequencies in a sample of prose assembled from

LCoOmposSite sources. *

(1) For obvious reasons, we do not have any empirical data on the
cumulated word frequencies for a whole language. On a priori grounds, it
does not appear unreasonable to postulate that these frequencies are de-
temined by a process like that described in §II. The parameter U is
then the rate at which neologisms appear in the language as a fraction of
all word occurrences—and hence ¢ can be assumed to be very close to
zero.

(2) The process of $II might also describe the growth of a continuous
piece of prose—for example, Joyce’s Ulysses. But there are some serious
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quences from octher works he has written, from works of other authors,
and, of course, from sequences he has heard. The model of $Ii apparenti

0
.

allows only for association, and excludes imitation.

The word frequencies in Ulysses provide obvious evidence of the im-
portance of both processes. The fact that the proper noun **Bloom’’ oc-
curs 926 times and ranks 30th in frequency must be attributed to asso-
ciation. If Joyce had named his hero “‘Smith,’" that noun, instead of
“Bloom,” would have ranked 30th. On the other hand, “*they,”” which

occurs 1010 times in Ulysses and ranks 27th, has very nearly the same

rank—the 28th—in the Dewey count. In fact, of the 100 most frequent
words in Ulysses, 78 are among the top 100 in the Dewey count. This

similarity in ranking of *‘common’’ words argues for imitation rather than -

association. Even for the common words, however, the variations in fre-
quency from one count to another are far too great to be explained as
fluctuations resulting from random sampling from a common population of
words. The imitative process must involve stratified sampling, and imi-
tation must be compounded with association.

It is worth emphasizing again at this point that assumption (I) does not

require that the choice of the next word from among those previously
written be completely random. Suppose, for example, that a writer were

to assign to each page he has already written a number, b Zp,‘ =(1~-0a),
the size of p; varying with the **affinity’’ of the subject discussed on the
jth page to the subject next to be discussed. If his next word were se-
lected by a stratified sampling of the previous pages, with probability p;
for each page, then equation (2.1) would generally be satisfied. For al-
though individual words would be distributed unevenly through the pre-
ceding pages, the totality of words having a given frequency, i, in all
the previous pages taken together would be distributed almost evenly
through these pages. Hence, the various frequency strata would have
proportionate probabilities of being sampled, for most choices of the pj

That is all that is required for equation (2.1). This same comment ap-
plies to the assumption we shall subse
sampling from other works.

Let us now reconsider the problem of a piece of continuous prose.
Since both the processes of association and imitation are involved, the
sequence that is counted is to be regarded as a “'slice,”” of length &, of
the entire sequence of words in the language, or of the eatire sequence
written by the author. Hence the word count is better described by the
stochastic process of §III than by the process of $II.

In determining the probability that a word selected in such a sequence
be one that has occurred exactly i times, we must comsider separately

make regarding imitative

1

(%
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the process of imitation and association. Assume that, on th
a fraction, (3, of the words added is selected by imitation, and the re-
maining fraction, (1 - 3), by association. Since no new words can-be in-

troduced by association, the joint probability that the next word will be

selected by association and will be a word that has already occurred ¢
times is (1 - B)if(i, k)/k.

The words selected by imitation present a more difficult probiem, and
we shall have to content ourselves with a reasonable assumption that

has no rigorous justification. On the average, a word that has occurred i
times will have a chance less than i/k of being the next one chosen by
imitation, because in the sequence that is being sampled there are words

that have not yet been chosen at all, and because with progressive change

- of subject, different strata of the language will be sampled. Since words

with large 7 will generally be *‘common”’ words, fairly uniformly distrib-

uted through all strata of the language, the deficiency may be expected

.
to be proportionately

greater for small 7 than for large i.  As a rough, but
teasonable, approximation let us assume that: ¢ probability that
the next word will be selected by imitation and will be a word that has
already occurred ¢ times is B(i — c)f(i, k)/k, where 0 <c < 1. (Our re-
sult would not be essentially altered if we wrote c(i) instead of ¢, pro-
vided only that c(i) does not vary a great deal.)

Adding the two joint probabilities—for association and imitation, re-
spectively—we find that the total probability that the next word be one
that has occurred 1 times is (i — Bc)f(i, k)/k. By summing this probabil-
ity over 7 and subtracting from 1, we find that the probability that the
next word be a new word is Bc(ng/k).

If the method of dropping words from the sequence satisfies assump-
tion (III) of §III, we set the difference between the birth-rate and the
death-rate equal to zero, and obtain the steady-state equation

(4.1) 0=(@G-cB=1f*\i-1)~-cBY*E)~ [,
v)hich has as its solution

f*) (i-cB~-1)
-1 -+’

Again, we obtain a distribution with the required properties.
(3) The distribution of word frequencies in a sample of prose assembled
from composite sources can be explained along the same general lines,

4.2)

"Again, we may regard the sample as a *‘slice’’ from a longer sequence,

but we might expect the parameters ¢ and /3 to be somewhat larger than
in a comparable piece of continuous prose. The qualification *‘compa-
rable’’ is important, for ¢ may be expected to be smaller for homogeneous
prose using a limited vocabulary of common words than for prose with a
large vocabulary and treating of a variety of subjects. Hence ¢ might

%
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well be larger for the continuous Ulysses count than for the Eldridge
count, which is drawn from newspaper sources. Indeed, the empirical

evidence supoests that this is the casge

preid SUggtsis i Lals LT CAaST.

There is no point in elaborating the explanation further. What has been
shown is that the observed frequencies can be fitted by distributions de-

- Py S R
d ‘l in pxubnuuuy abbumpuuua tnat are not

rive without plausibility.

A very different and very ingenious explanation of the observed word-
frequency data has been advanced recently by Dr. Benoit Mandelbrot
(1953). His derivation rests on the assumption that the frequencies are
determined so as to maximize the number of bits of information, in the
sense of Shannon, transmitted per symbol There are several reasons why

1 prefer an exnlanation that pmh'nve a

n ma
(02452 853 8 Capialiationl aac CysS =

han maximizing
assumptions. First, an assumption that word usage satisfies some cri-
terion of efficiency appears to be much stronger than the probability as-
sumptions required here. Secondly, numerous doubts, which I share,
have been expressed as to the relevance of Shannon’s information meas-
ure for the measurement of semantic information.

Before leaving the subject of word frequencies, it may be of interest
to look at some of the empirical data. Good (1953, pp. 257-60), has ob-
tained good fits to the Eldridge count and to one of Yule’s counts by the
use of equation (1.6). Table 2 summarizes a few of the data on two word

....... (1.0). 4D1C allzes a4 L2510 data or

counts, and compares the actual frequencies, f(1), f(2) and f(3) with the

frequencies estimated from equation (1.3). The actual values of & and

te O = nx/k, and (2.11) and (2.21) to obtain the ex-

‘4
o
"
0

n; are used to estim
pected frequencies. In both cases the observed value of ni/k leads to
an estimate of p in the neighbourhood of 1.1 to 1.2. An empirical fit to
the whole distribution of a function of the form (i) = Ka™(P*D gives an
estimated value of p, in both cases, of about one—in reasonable agree-
ment with the first estimate. A good fit to both the Ulysses and the Eldridge
counts can also be obtained from (4.2), with ¢ equal to about 0.2 in the
former case, and close to zero in the latter.

In the case of Thorndike’s count of 4Y4 million words in children’s
books (Thorndike, 1937), we may assume that the supply of new words
was virtually exhausted before the end of the count. In his count f(1) is
substantially below 0.57; (about 0.34n:), as we would expect under
these circumstances (see case I of §$II). Thorndike estimated the em-
pirical value of our p at 0.45, which is entirely consistent with the ob-
served value of 0.34n; for f(1). For, by (2.32), p, =p/(p + 1) =0.31.

TABLE 2
nk 1) £2) 13)

k| Actual| Estimate | Actual {Estimate | Actual | Estimate

Word count a=

RV
Ulysses (Hanley, 1937)| 0.115| 16,432 15,850 | 4,776 | 4,870 *| 2,194] 2,220
Eldridge (Good, 1953) | 0.136| 2,976 3,220 | 1,079 977 516 400

ava

mber, i, of papers e each
ns, 1953). These are counts

of (a) papers written by members of the C}ucago Section of the American

Mathematical Society over a 25-year period; (b) papers listed in Chemi-

cal Abstracts (under A and B) over 10 years; (c) papers referfed to in a

history of physics; and (d) papers and abstracts in Econometrica over a

bstr in Econometr oveg a
20-year period.

.y | 8
Ol [o4
to a journal or journals (Davis, 1041:

ae R -]

We may postulate a mechanism like that of $III, equation (3.1). The
authorship of the next paper to appear is '‘selected’ by stratified sam-

pling from the strata of authors who have previously published 1, 2,...,
papers, the probability for each stratum being proportional to if(i). Again,
the probabilities for individual authors need not be proportional to i, but
only the probabilities for the aggregates of authors with the same i. For
example (as in the case of words), the probability for a particular author
may be higher if he has published recently than if he has not. The grad-

ual retirement of authors corresponds to assumption (III).

A comparison of the actual frequencies, for i from 1 to 10, with the
. ies,

derived from (2 11) and \‘.4.1) is shown in Table

3. The fxt is reasonably good, when it is remembered that only one

parameter is available for adjustment. However, it should be noted that

the estimated frequencies tend to be too high for i = 1, 2 and too low for

i=3,..., 10. In three of the four cases, they are again too high for the

tails of the distributions. A further refinement of the model is apparently
needed to remove these discrepancies.

TABLE 3. Number of persons contributing

No. of Chxcasgo(:: Math. Chem. Abstracts Physicists Econometrica
contributions :
Actualt| Estimate| Actualt|Estimate]| Actualt|Estimate | Actuall[Estimate
1 133 - 3,991 4,050 [784 824 436 453
2 43 46 1,059 1,160 {204 217 107 119
3 24 23 493 522 |127 94 61 S1
4 12 14 287 288 | 50 50 40 27
5 11 10 184 179 | 33 30 14 16
6 14 7 131 120 | 28 20 23 11
7 b) b3 113 8 | 19 14 6 7
s 3) 4) 85 64 | 19) 10) 11) 5]
9 9}13 3}10 64 49 6}32 8p24 1+12] 4}p12
10 1 3 65 38 7 6 0 3
11 or more | 23 30 419 335 | 48 52 22 25
Estimated a 0$ 0.30 0.39 0.41
Estimated p 0.916$ 1.43 1.64 1.69
: k 1,124 22,939 3,396 1,759
ng 278 6,891 1,325 721
' 1.07 - : - -

tDavis (1941).
{ Leavens (1953).
$p=P estimated in this case from (2.31) to (2.32).
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observed, for every 1).S. Census since the
countries as well,

st other Western

t o 1er Western
that if F(i) is the number of cities of population greater than i, then

where p is close to 1 (see Zipf, 1949, chs. 9, 10).
Again, we would expect such a distribution if the underlying mecha-
nism were one describable by equations like (2.3) and (2.4). Such a

mechanism is not hard to conceive. First, equaticn (2.3) would hold if
the growth of population were due solely to the net excess of births over

Al Ziowia 92

deaths, and if this net growth were proportional to present population.

anssnhls, Maranver it
er, 1t

This assumption is certainly satisfied at least rougnly. Moreov
need not hold for each city, but only for the aggregate of cities in each
population band. Finally, the equation would still be satisfied if there

were net migration to or from cities of particular regions, provided the
net addition or loss of population of individual cities &ithin any region

was proportional to city sizé.’ That is, even if all California cities were
H np. the equarion would hold

.
o
i 5y e & L101)

IS

growing, and all New
provided the percentage growth or decline in each area were uncorrelated

with city size.

In the case of cities, equation (4.3) coul y
down to some minimum city size——say, 5000 or 10,000. The constant
o would then be interpreted as the fraction of the total population growth
in cities above the minimum size that is accounted for by the new cities
that reach that size.

D. Income Distribution. - Vilfredo Pareto is generally credited with the
discovery that if personal incomes are ranked by size, the number of
persons, F(i), whose incomes exceed i can be approximated closely, for
the upper ranges of income, by equation (4.3) with p usually in the neigh-
bourhood of 1.5 (Davis, 1941; Champernowne, 1953). Hence, the income
distributions bear a family resemblance in their upper ranges to those we
have already considered, although the parameter, p, is substantially
‘larger than 1—its characteristic value in the case of word frequencies
and city size distributions.

A stochastic mechanism similar to those described in $III would again
produce steady-state distributions closely resembling the observed ones.
We picture the stream of income as a sequence of dollars allocated prob-
abilistically to the recipients. If the total annual income of all persons
above some specified minimum income is k dollars, the segment of this
sequence running from the mth to the (m + k)th dollar is the income for
the year beginning at time m. We assume that the probability that the
next dollar will be allotted to some person with an annual income of i
dollars is proportional to (i + ¢€)f(i), with ¢ positive but small. This rep-

resents a modification of assumption (I) that decreases the proportion of
LS

d only be expected to hold

€am going to persons of highlincon:e relative to the propor-
that a fraction of the dollars is assignej; t:;un:: "::::‘:] :‘Ze' oo
r?acl?{gg the minimum income to which the ra;;uﬁ)pt-i-c;'r;'l‘q%“h P
tx?n .(u)). We assume that there is considerable varia o
within each income class in the probability of recejv
come, so that the rate at which rdollars a;eu;!r:):ce‘;
m increases satisfies assumption (III). F

, Which now holds for i great

v}

pply (assump-
riance am(')ng persons
iving additional. in-
from any income
) Then we obtain again
er chan o .. .
F oi 1Vl:urgr: 1, this flistribution has the required [p::::rtrizes :i:}tmlu/? income.
| The same result has been reached by D. G. Champernowne (19; N
owing a somewhat different route. le divides income rec o
tx{ne? L mfo classes of equal proportionate width.v T}:;t:s‘;
minimum income considered, then the first class conta "

; : ' ins pers i

incomes between i, and ri,, the second class. ne i 'p' o e
: ‘ m+ the second class, persons wit [

tween riy and r*i,,, and so on. ces 20 probabiliciee

Next he intr iti
oduces trans iliti
tween rim and r'ip, so on. ition probabil
Peh, that a person who is in class g at time ¢, will be j ; s
t,. He assumes that 5.» is & funce: e € in class b at time
. that pgp is a function only of (g — ). N by hi i
nition of the income “ersons n et
classes i
il be he income cl ) the average income of persons in class g
; : times the average income of persons in class b,
?nce, the expected income at ¢, of a person who was ; .
Hoace, p n who was |

(4.9) S i =% (8-h);
Lb_“'ghlb =/ bt~y Vig=0ig (0 a constant),
b
where i, is the average income in class g.

sumes explicitly that & < 1.

m is the

P
i,

=]
o]

1 class g at ¢,

" ass Prof. Champernowne as-
o Cxplicitly ol tor.n 't Is 1t is clear that his model satjs-
ptions (I) (in its original form) and (II). Furth 1
assumes a substantial variance in income ex . *h since he
a given class,
lHence

. pectations among persons in
A, ofurhassur:ptxon (III) is also approximately satisfied
, ite of the surface differences between hj .
de;ek;pe;l here, the underlying structure is the same 19 model and those

. Biological Species. We conclude thj inc

ical this ver i
no;xl)ena exhibiting the Yule distribution by M”.z’ai.‘i’;;";gie': hSt' o
; . mentioning xample igi-
t:e }r’, an:lysed’ by Yule himself (1924). It was discovered by n‘xlli:zﬂt
the um er,./(z), of genera of plants having i species each was distrib-
ue ;pptoxlmate-l): according to (4.3), with p < 1. Yule explained th l
t a by a pro%:abn.hty model in which the probability, s, of a specific -
i‘t:on ?ccumng In a particular genus during a short time interval vrvn:s-
f op}o;uonal to the mfmbet of species in the genus; while the probabilit
n,umbe gefneuc mutasuon during the same interval was proportional to tlre,
r of genera. Starting at ¢, with a sin
a. Star . gle genus of one species

::T.,Puted th.e dx'stx.ul-aunon G, t) for ¢, t,,..., and found thselci‘r:;t' :e

o, This limiting distribution corresponds to (2.13) with p = r/ss

13
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_<.
E,

ule observed that for 7 < s (as required to fit the empirical data), this
stribution function, and obtained the approximate dis-
1

l-- -
,: -
faal
[}
"
~
ﬂ

tributio His procedure was equiva{en“ to replacing the com-
plete Beta functxon in (2.13) b the mcomn] e Beta function, taking as

the upper limit of integration an appropriate function of T.
If, in the process of $1I, we define & as the total number of different
species and f(i, k) as the number of genera with exactly i species, we
see that our k is a monotonic increasing function of Yule’s ¢ (specifi-
cally, k = e’). Making the appropriate transformation of variables, we
find that Yule’s assumption with respect to the rate of specific mutation

corresponds to our assumption (I’) (and hence is consxderably stronger

H S-SR
than the assumption we employed in $II). Mak king th

e
tion of variables with respect to his assumption of aco

generic mutation, we find that ng = e"'. We can then gn pute a(k) (which
1

will now vary with k) by taking the derivative of ng with respect to .
We obtain
(4.5) k) = re(™s¥ /s,

equation (2.34) of case II, where we
nd in the limit, as t = 00, p = 1/s, as

required. Hence, we see that the process of §1I is essentxally the same

as the one treated by Yule.

It is interesting and a little surprising that when Yule, some twenty
years after this discovery, examined the statistics of vocabulary, he did
not employ this model to account for the observed distributions of word
frequencies. Indeed, in his fascinating book on The Statistical Study of

Literary Vocabulary (1944) he nowhere refers to his earlier paper on
biological distributions.

V. CONCLUSION

This paper discusses a number of related stochastic processes that
lead to a class of highly skewed distributions (the Yule distribution)
possessing characteristic properties that distinguish them from such

1€ 4l Qistiit aSad wavaia a0l SUladl

well-known functions as the negative binomial and Fisher’s logarithmic

series. In $I, the distinctive properties of the Yule distribution were de-

scribed. In §$1I and III several stochastic processes were examined from
which this distribution can be derived. In §IV, a number of empirical
distributions that can be approximated closely by the Yule distribution
were discussed, and mechanisms postulated to explain why they are de-
termined by this particular kind of stochastic process. In the same sec-
tion, the derivations of $$II and IIl were compared with models previously
proposed by Yule (1924) and Champernowne (1953) to account for the
data on biological species and on incomes, respectively.

.

164 MODELS OF MAN . )

The probability assumptions we need for the derivations arte relatively
ak. and of the same order of generality as those commonly employed

wenl(, ang o1 the same or1dct Of

in deriving other distribution functnons-—the normal, Poisson, geometric
and negative binomial. Hence, the frequency with which the Yule dns-
tribution occurs in nature—partxculady in social phenomena—shouid-oc-

21 ehne all Anmnera s of

casion no great surprise. This does not imply that all occurrenges !
this empirical distribution are to be explained by the process ‘discusse

here. To the extent that other mechanisms can be shown also to lead to
ke same distribution. its common occurrence is the less surprising. Con-

tii€ same Gi oution, 1IS COMIMOIA OLLLle

versely, the mere fact that particular data conform to the Yule distribu-

tion and can be gnven a plausxble interpretation in terms of the stochastic

e tells little about the underlying phenomena bevond
mooex proposeu u ere teus lictle about the ur

what is contained in assumptions (I) through (III).
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