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Some Further Notes on a Class of
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This note takes issue with a recent criticism by Dr. B. Mandel-
brot of a certain stochastic model to explain word-frequency data.
Dr. Mandelbrot’s principal empirical and mathematical objections
to the model are shown to be unfounded. A central question is whether
the basic parameter of the distributions is larger or smaller than
unity. The empirical data show it is almost always very close to
unity, sometimes slightly larger, sometimes smaller. Simple stochas-
tic models can be constructed for either case, and give a special sta-
tus, as a limiting case, to instances where the parameter is unity.
More generally, the empirical data can be explained by two types
of stochastic models as well as by models assuming efficient infor-
mation coding. The three types of models are briefly characterized
and compared.

1. INTRODUCTION

In a recent note in this journal, Dr. Benoit Mandelbrot has raised
some objections to a stochastic explanation of certain well-known data
on word frequencies. A number of fundamental points in Dr. Mandel-
brot’s note appear incorrect, others are debatable. Some of these relate
to the empirical properties of the distributions, some to the mathematical
analysis. Since the words frequency data have attracted a great deal of
attention, it is perhaps worth while to try to clarify the points at issue.

Let f(4,k) be the number of different words, each of which occurs
exactly ¢ times, in a sample of k& words of text. In a wide range of cases,
the observed data can be fitted quite well by a function of the form:

f(Ek) = G(k)i** (1)

and even more satisfactorily, particularly for low values of %, by the
funection:

f(ik) = AB(ip + 1) (2)
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where A and p are constants, and B(z,p + 1) is the beta function of 7,
p + 1. As ¢ increases, (2) approaches (1) ‘fj,symptotic;aml_ly.1 For both
(1) and (2), the expected value of 7 is finite if and only if p > 1.

Function (1) has a long history in statistics; in economics, it is usually
associated with the name of Pareto, in linguistics, with the names of
Estoup and Zipf. Zipf was particularly interested in the case where
p = 1. Function (2) was first introduced by Yule (1924) to explain
certain taxonomic data of Willis, and hence I have proposed calling it
the Yule Distribution.

2. THE EMPIRICAL DISTRIBUTIONS

A great deal of Dr. Mandelbrot’s eritical discussion depends on his
claim that for the empirical word-frequency distributions, p < 1. He
states categorically (1959, p. 92):

“One finds, in general, that p < 1 for word frequencies . .. The few
cases where p > 1 are also quite exceptional in other respects (e.g.,
Modern Hebrew about 1935).”

He makes an almost identical statement on page 498 of (1953).
Unfortunately, he does not in either case present his evidence, and the
source, Zipf, on which he chiefly relies, contradicts him. The data that
Zipf report show p to be greater than 1 more often than not, and almost
always to be very close to 1—a point to which I shall return. I find in
Zipf the following least-squares estimates of p: for Joyce’s Ulysses, be-
tween 0.99 and 1.01 (p. 34); Plautus, .98 (p. 34); the Iliad, 1.15 (p.
34); Nootka and Plains Cree holophrases, 1.36 and 1.14, respectively
(p. 84); Nootka morphenes, 0.67 (p. 85); Nootka varimorphs, two
values, 0.67 or 1.12, depending on the curve-fitting method (p. 85);
Dakota words, 1.29 (p. 86); Gothic words, 1.025 (p. 94); old high Ger-
man words, 0.98 (p. 116). In addition, a large number of values, all
close to 1, are reported for children’s speech.

In addition to the calculated values, Zipf presents a large number of
graphs of distributions, on a double-log scale, in virtually all of which
p is very close to 1-—sometimes a little greater, sometimes a little less.
The figure on page 25 of Zipf, for example, strikingly conforms to the
hypothesis, with p indistinguishable from unity. In most of the distri-
butions (see, e. g., Zipf, pp. 123, 125), there is a little curvature, usually
a convexity upward. Under these circumstances, neither function (1)

! For additional detail see page 426 of Simon (1955), which I shall refer to by
*he short title, ““Yule Distribution.”




82 SIMON

nor (2) fits exactly, and it is difficult to know how best to estimate p.
An unweighted least-squares fit to the distribution on a logarithmic
scale is perhaps not the most plausible method.

Several estimators are proposed in “Yule Distribution.” If & is the
size of sample, n; the number of different words in the sample, and f(1)
the number of different words each of which occurs exactly once, then,
by Eq. (2.19) and (2.12) of “Yule Distribution,” we have « = n/k
and p = 1/(1 — a). Using these relations, we find the following values
for p: Ulysses, 1.13; Eldridge’s word count, 1.16; Yule’s count of nouns
in Macaulay, 1.33; Plautus, 1.34. (In fairness, it should be pointed out
that when this method of estimating is used, p is necessarily greater
than 1.) Alternatively, we can estimate @ by Eq. (2.21): (2 — a) =
n/f(1). We then find the following values: Ulysses, 1.24; Eldridge,
.983; Macaulay, .935; Plautus, 1.81. (See the discussion of this esti-
mator on page 431 of “Yule Distribution.’”)

Finally, it should be observed that if p < 1, neither (1) nor (2) can
hold through the entire range, for in this case the mean of the distribu-
tion would be infinite. No model (and this applies to Dr. Mandelbrot’s
as well as to mine) that requires p < 1 can hold for indefinitely large
values of . Empirically, this shows up in the curvature of the observed
distributions for large <.

We must conclude that Dr. Mandelbrot has not established his case
that, in general, p < 1. On the contrary, the data suggest that generally
p~ 1. But what is the significance of this? Several derivations of (1)
in Mandelbrot (1953 and 1954) require that p < 1 (page 495), and
therefore fail to handle any of the empirical distributions for which the
parameter exceeds unity. On the other hand, the first derivation (pp.
427-429) of (2) in “Yule Distribution” requires that p > 1, and there-
fore fails when the parameter falls short of unity. However, a number of
variant models are discussed in “Yule Distribution” which lead, ap-
proximately, to (2), and which admit p < 1. I shall discuss below whether
these variants involve ‘“‘analytic circularity” (Dr. Mandelbrot’s term
for “lack of parsimony’’).

In trying to decide whether the parameter is greater than or less than
unity, we must not lose sight of the striking fact, already mentioned,

2 That Dr. Mandelbrot is aware of this is revealed by his comment (1959, p.
91): “These will always be ‘weak’ laws, in the sense that they break up either for
small 7 or for large 7 depending upon the specific example.”” Again, see page
431 of ‘‘Yule Distribution.”
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that it is almost always very close to unity. It is hard to specify how
close for there are no satisfactory tests of closeness of fit in these matters,
and hence it is not surprising that different statisticians, equally ‘“skilled
in the art,” may experience different degrees of satisfaction with the
results. I. J. Good (1953, pp. 258-259), for example, after fitting (2),
in the special case where p = 1, to the Eldridge word-frequency count,
concludes that the fit “is remarkably good” for ¢ < 15, and can be im-
proved by introducing a convergence factor. He fits the same function
to Yule’s sample of nouns in Macaulay’s essay on Bacon, and says
(p. 261): “It is curious that this should again give such a good fit for
values of ¢ that are not too large (¢ < 30). The sample is of nouns only
and, moreover, Yule took different inflexions of the same word as the
same.”

Yule, himself, was much more critical, rejecting the fit of (1) to both
Zipf’s data and his own (p. 55):

“] spent some time on a re-examination of his data and cannot agree
with the claim that the formula holds to any satisfactory degree of pre-
cision even for his distributions: it certainly does not hold for any of my
own that I have tested.”

If we accept Mr. Good’s more optimistic conclusion that some of the
fits are ‘“‘remarkably good” for the limiting case, where we take p = 1,
then we would like our theory of the phenomena to explain the special
significance of this limiting case. The derivation of (2) in “Yule Distri-
bution” does this, for it shows that as long as the ratio of number of
different words in the text to total word occurrences is small (say, not
more than 0.2), the parameter will be close to 1 (say, not over 1.25).

Before leaving the subject of the empirical distributions, I should like
to state my agreement with Dr. Mandelbrot that for the taxonomic
examples of Willis, p < 1, for income distributions, p > 1. But the data
on pages 377-382 of Zipf clearly contradict his assertion that ‘“for non-
biological taxonomies such as names of professions, business catalogues,
etc., . . . p is always less than one, and usually it is close to 15.”

3 T would conjecture that Yule used the chi-square test to reject the hypothesis.
We are confronted here with the usual difficulties of testing an extreme hy-
pothesis. Incidentally, Dr. Mandelbrot (1959, p. 93) seriously misinterprets Yule
when he uses the passage just quoted to conclude that (1) holds only for in-
flected words and not for lexical units or nouns alone. Yule’s stricture applies
to all cases, and almost equally good, or bad, fits are obtained under a wide range
of alternative definitions of the unit.
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3. THE STOCHASTIC MODELS

In Section IT of “Yule Distribution,” I formulated a stochastic model
that yields (2) as its steady state distribution.* As I pointed out there,
the definition of “steady state” poses some difficulties. Hence, I rein-
terpreted the same model in Section III, by means of an alternative
urn scheme, in a way that allowed a rigorous definition of “steady state.”’

Dr. Mandelbrot’s principal objections, however, are levelled against
the derivations in the case where p < 1. I have already given the reasons
from empirical observation for thinking this is not generally the signifi-
cant case for word frequencies. Nevertheless, this case certainly does
arise in some instances, (e.g., the Thorndike count), and in applications
of these kinds of stochastic models to other data (e.g., the taxonomic
data of Willis). Hence, I should like to discuss this case a little more
fully.

On pages 430-431 of “Yule Distribution” I show heuristically how
the case p < 1 for small ¢ might arise. Dr. Mandelbrot (1959, p. 96),
after introducing several approximations, which he does not justify in
detail, shows that my approximation can be “exact” only in a very spe-
cial case. I will go further, and say (as I did already on page 431 of
“Yule Distribution”) that it cannot be exact even in that special case
because of nonconvergence as 7 increases.

On page 439 of “Yule Distribution” I gave a short sketch of an al-
ternative derivation of (2) for p < 1, corresponding to Yule’s (1924)

4 Since Dr. Mandelbrot mentions several times that this model is a special case
of Champernowne’s, I should like to put the record straight. Champernowne
never derives (2), but only the approximation, (1). Yule derives (2) for the
case p < 1, but not for p > 1. Neither Champernowne’s derivation nor Yule’s dis-
closes the special significance of the limiting case, p = 1, or the reasons why
the word distributions should lie close to this limiting case. Moreover, the as-
sumptions required for my derivation of (2) are much weaker than Yule’s.
Finally, since Rapoport (1957, p. 157) has suggested that my derivation was
a ‘‘counter-analysis’’ to Mandelbrot’s, I might mention that at the time I
derived (2) I was not familiar with the papers of Mandelbrot, Champernowne,
or Yule. I came across these in the course of the search for prior work that one
normally makes before publishing.

5 The alternative derivation of Section III disposes, I think, of Dr. Mandel-
brot’s assertion (1959, p. 95) that “actually, f* ~ & cannot be considered as
being a steady-state requirement.” Since he says he plans to raise this point
on another occasion, perhaps we can postpone further discussion of it to that
time.
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f(im) = ANB(i +¢,d — ¢ + 1), (4)
where -

— (1 - a)(k + dnk)
(k + cm)

and B is the beta function. If we compare (4) with (2), we see that the
latter has a convergence factor, A, that is missing from the former, and
that p has been replaced by d — ¢ = p*. In particular, if d is not much
larger than ¢, we will have p* < 1.

The process (3) has a number of interesting special and limiting cases.
For example, if ¢ = d, the steady state distribution is a generalization of
Fisher’s log series distribution: f = A(1 — «)*/(¢ + ¢). On the other
hand, as d approaches zero and ¢ increases without limit, we obtain
the limiting process:

Gm) = L= 5 — 1) — 5]

my

A

1 (5)
— 26 = G+ DIG+ D=0

the steady state distribution for which is simply the Poisson distribution:
f(#) = AN'/i! The reader can verify these results, by substituting the
solutions in Eqgs. (3) and (5), respectively.

4. THE MEANING OF THE WORD FREQUENCY DISTRIBUTIONS

It appears from this analysis that the stochastic interpretation of the
word frequency data proposed in ‘“Yule Distribution” is decidedly more
adequate than Dr. Mandelbrot allows. What is the relation of this in-
terpretation to the alternative interpretations that Dr. Mandelbrot had
proposed (1953, 1954)? Dr. Mandelbrot’s models are of two types:

(1) Derivations of the distribution from various assumptions of effi-
cient letter-by-letter coding of the language;

(2) Derivations of the distribution from various Markovian assump-
tions about the stochastic formation of words from strings of letters.

From a formal mathematical standpoint, Dr. Mandelbrot’s efficient
coding models and his stochastic models are substantially equivalent.
The two types of derivations correspond, respectively, to derivations in
classical statistical mechanics based on entropy maximization, on the
one hand, and statistical equilibrium, on the other. Dr. Mandelbrot’s
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stochastic models are quite different from those of “Yule Distribution,”
since the latter rest on no assumptions whatsoever about the statistical
properties of the alphabet in which the words are encoded.

It seems to me something more than a matter of taste and convenience
whether certain empirical regularities can be explained as the products of
stochastic processes arising from imitation and association, as proposed
in “Yule Distribution”; whether we explain them by postulating a
mechanism that maximizes the amount of information transmitted per
symbol ; or whether we explain them on the basis of statistical properties
of the encoding process. My feeling that the teleological explanations
are particularly to be avoided unless other evidence requires them is
perhaps a prejudice, but it is a prejudice shared by others. Miller, New-
man, and Friedman (1958) say, for example:

“This derivation [the one numbered (2) above] has the advantage
that it does not assume optimization in terms of cost; it begins with the
more palatable assumption that the human source is a stochastic proc-
ess.”

As between the two stochastic explanations, I confess also a preference
for that developed in ‘“Yule Distribution.” First, unlike the stochastic
derivation from coding considerations, it involves mechanisms of imita-
tion and association that are consistent with what we know about social
and psychological processes. Second, while all the data on the word
frequency distribution show it to be extremely regular, the data on the
variation of word frequency with word length show only a very rough
relation. This suggests that very frequent words become abbreviated in
use, and hence generally become short words. Use causes shortness, not
shortness use. Common sense suggests the same thing. However, it would
be nice to be able to choose between the two major types of stochastic
models on the basis of clearcut evidence rather than these very crude
considerations. The evidence remains to be discovered.

Recevep: July 1, 1959. Revised September 15, 1959.
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