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Ceiling shapes for concert halls are proposed that, on the basis of prior extensive subjective evaluations, 
should result in high listener preference of the hall's acpistoca; response to music. These shapes are based 
on the premise that as little as possible of the early sound energy should arrive at a listener's ears in the 
"median" plane (the vertical symmetry plane through the listener). While this goal is inherently 
approached in old-style, high-and-narrow halls, its realization in modern, low-ceiling halls requires special 
ceiling shapes and surface structures to keep early, median-plane sound away from the listener's ears. 

PACS numbers: 43.55.Br, 43.55.Fw, 43.66.Pn 

I. BINAURAL DISSIMILARITY 

In an extensive subjective evaluation of European 
concert halls, Schroeder, Gottlob, and Siebrasse • found 
that the "binaural dissimilarill' of t•'e two ear signals, 
recorded from a (specially designed) dummy head was 
highly correlated with the subjective preference data. 
Specifically, for concert hails and seat positions with 
highly similar ear signals, the subjective preference 
was low. Conversely, for more dissimilar ear signals 
the preference was high. In other words, binaural dis- 
similarity and subjective preference are positively cor- 
related. In fact, binaural dissimilarity was found to be 
at least as strongly correlated with preference as any 
other objective parameter--including reverberation 
time. 

The musical program material for these studies was 
from the classical and romantic repertoire. However, 
considering the fundamental invariance of all musical 
perception--as opposed to speech perception--one may 
expect corresponding results for other musical styles 
as well. 

Binaural similarity (called "interaural coherence" 
and abbreviated "C" in Ref. 1) is defined as the peak 
value of the correlation function of the first 80 ms of 

the impulse responses within an interaural delay range 
of 1 ms. Binaural dissimilarity is defined as the nega- 
tive of binaural similarity. 

The results imply that sound arriving in the median 
plane of a listener is detrimental to subjective prefer- 
ence because such median-plane sounds lead to identi- 
cal sound pressure waves at the two ears thereby de- 
creasing binaural dissimilarity. (An explanation for the 
detrimental effect of median-plane sound is that it leads 
to a more "monophonic"--as opposed to "stereophon- 
ic"wlistening experience. 2's) 

This conclusion is confirmed by another result of the 
investigation: The highest correlation between subjec- 
tive preference and a geometrical parameter of the hall 
was with the width of the hall; the narrower the hall, the 
higher the preference and vice versa. Narrow halls, of 
course, have more numerous and more powerful early lat- 
eral reflections that arrive at the ears near the horizontal 

plane as opposed to the (vertical) median plane. Such early 
lateral reflections lead to agreaterbinaural dissimiarity, 
and therefore higher listener preference. Others who have 
discussed the effects of early lateral reflections include 
West, e Marshall, 7's Keel, 9 Barron TM and Kuhl. TM 

More recently, even more direct evidence for the 
importance of early lateral reflections has been ob- 
tained by the author and his collaborators at G6ttin- 
gen? '•e While in the study of real halls different phys- 
ical parameters come in a "predetermined mix," which 
can only be disentangled statistically by appropriate 
subjective scaling methods, the technique of digital 
simulation TM can be employed to alter one physical para- 
meter at a time and to study its effect on musical pref- 
erence independently of all other potentially confusing 
factors. 

Accordingly, binaural impulse responses from real 
halls were fed into a computer and digitally modified by 
adding (or deleting) lateral reflections. When the effect 
of these modifications is expressed as binaural simil- 
arity (as defined above), it was found that subjective 
preference reached its maximum value for zero bi- 
naural similarity? The lowest subjective preference 
score was obtained for the highest value of binaural 
similarity. Interestingly, low preference was also 
found for negatively correlated earsignals. Thus, within 
the scope of these investigations, it can be concluded 
that zero binaural similarity is optimum even if in ac- 
tual enclosures this goal cannot be completely realized. 

II. CEILING SHAPES 

How then can we design concert hall ceilings that 
avoid direct (median-plane) reflections into the audience 
area? Absorption is vetbotch because we need the en- 
ergy from the ceiling for reverberation. However, we 
can shape the ceiling to reflect most of the sound energy 
to the side walls, whence it will reach the listener, di- 
rectly or indirectly, from lateral directions. 

One possible ceiling shape would be a convex (curved 
downward over the "center aisle") hyperbolic cylinder 
whose axis runs parallel to the front-back axis of the 
hall. A hyperbolic surface, as is well known, reflects 
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rays from one of its focal lines as if they were coming 
from the other focal line. Thus, if the outer focal line 
of the ceiling's hyperbolic cross section is located in 
the stage area at the height of the musical instruments, 
the reflected sound rays will seem to come from a point 
only slightly above the ceiling and will spread out ac- 
cordingly with much more energy going laterally than 
for a plane ceiling. 

More generally and less mathematically speaking, 
the ceiling should droop above the center aisle with a 
U-shaped cross section to minimize median plane re- 
flections. 

Ill. HIGHLY SOUND-DIFFUSING CEILINGS 

Another and possibly more effective solution would be 
to design a celing with extremely diffuse sound reflec- 
tion, scattering a simple ray into ten or more "ray- 
lets" with roughty equal energies over a wide angular 
distribution. Surfaces with such highly diffuse reflec- 
tions including experimental results were described 
previously. te'zt These surfaces were designed to have 
local reflection coefficients for normally incident sound 
alternating between +1 and -1 according to a mathe- 
matical sequence (binary "maximum-length sequence," 
also called binary "pseudorandom noise"). Reflection 
coefficients of -1 for hard surfaces are easily realized 
by a quarter-wavelength "wells" in the wall. 

However, because of the quarter wavelength require- 
ment, the sound diffusing properties of the surface de- 
pend upon the wavelength of the incident sound. In prac- 
tice it is found that good diffusion is obtained in a range 
of wavelengths half an octave below and above the "de- 
sign wavelength." For an incident wave of half the de- 
sign wavelength, the wells are, of course, half a wave- 
length deep, resulting in near specular reflection by 
the surface. (However, at one-third the design wave- 
length, the surface is a good diffusor again). 

IV. QUADRATIC-RESIDUE DIFFUSORS 

In the meantime, we have looked hard for surface 
structures that give excellent sound diffusion over larg- 
er wavelength ranges. In this search, we discovered, 
by computer simulation, that surfaces based on m-ary 
maximum-length sequences z2 are capable of good dif- 
fusion over larger bandwidths--presumably because 
such surfaces have wells of several different depths. 
This led us to still another kind of mathematical se- 

quences, the quadratic-residue sequences of elementary 
number theory, investigated by A.M. Legendre and 
C. F. Gauss. These sequences are defined as follows 

s,=n • (where n z is taken as the least non-negative 
remainder nodulo N, and N is an odd prime). 

(1) 
As an example, for N= 17, the sequence reads (starting 
with n = 0): 

0, 1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1; 0, 1, 4, etc. 

These sequences are symmetric [around n--0 and 
n -• (N - 1)/2] and periodic with period N. In addition, 
they have the following astounding property: The dis- 

crete Fourier Transform R m of the exponentiated se- 
quence 

r, = exp(i2rrs,/N) , (2) 

has constant magnitude. In fact, 

[R.I 2= expi-iZnm/v)l'--1/v. (3) 

Of the several proofs of this relationship, a particular- 
ly simple one is based on the fact that the autocorrela- 
tion sequence of r. is zero except for a zero shift (mod- 
ulo N). = And this, in turn, is a consequence of the 
fact that the s, form a complete deference set, i.e., 
that no matter what interval k one considers, the pair- 
wise differences s,. k- s, (rood 3/) generate all the num- 
bers between 0 and 3/- 1 exactly once per period. Thus, 
for k = 1, for example, the differences generated are: 

1, 3, 5, ?, 9, 11, 13, 15, 0, 2, 4, 6, 8, 10, 12, 14, 16. 

As a consequence, the autocorrelation becomes the sam 
of a complete set of roots of unity which is, of course, 
zero. As S. W. Golomb xe has shown, the spectrum of a 
sequence that has a two-valued autocorrelation is flat. 

Now suppose we construct a hard wall and give it 
local reflection coefficients for normal incidence accord- 

ing to the exponentiated quadratic-residue sequence r,? 4 
(See Fig. 1 for an illustration of a cross section through 
such a surface for 3/= 17.) What kind of sound reflec- 
tion properties might it have? This is a complicated 
diffraction problem. Nevertheless, by making several, 
rather bold, simplifications, we can get at least some 
approximate answers. 

We shall consider the reflecting surface as planar 
with a local impedance g(x) which varies only along one 
of its dimensions (x) in a periodic fashion with period 
Nw (see Fig. 1). Z(x) is constant in the direction ortho- 
gonal to x. Thus, we can treat the diffraction problem 
as a two-dimensional problem, the two dimensions 
being the x direction and the direction normal to the 
reflecting surface. By definition: 

Z(x) :p(x)/o(x) , (4) 

where p(x) is the sound pressure and v(x) is the com- 
ponent of the particle velocity normal to the reflecting 
surface (the normal being directed into the surface). 

The sound pressure p(x) is composed of that of the 
incident or "arriving" wave p,(x) and the scattered 
waves p•(x): 

p(,,) = + (5) 

If the incident wave has unit amplitude and an angle 
of incidence a• with respect to the surface normal, one 
has 

p•(x) = exp(-/kax) , with k• = (2r•/X)sinaa. (6) 
The dependence of the scattered waves on x is 

p,(x) = a s exp(-/ksx), with k•= k• + 2•s/Nw , (7) 

wh•re Nw is the period of the impedance g(x). The a, 
are the yet unknown sealteriag amplitudes--which we 
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FIG. 1. Lateral cross section through 
diffusely reflecting ceiling based on 
quadratic residue sequence with N = 17. 
The width of each "well" equals 0.137 X0, 
where X 0 (3 cm in the scale model) is 
the "design" wavelength. The depths of 
the wells d(x) vary according to Eq. (15) 
from 0 to a little less than half the de- 

sign wavelength. The thin vertical lines 
represent rigid separators between in- 
dividual wells. They are crucial for 
good diffusion. particularly for obliquely 
incident sound. 

hope to be as uniform in magnitude as possible. (The 
relation for k•, the "spatial frequencies" in the x direc- 
tion, is the same as that in Eel. 18, Eqs. (2a) and (2b), 
except for a change in the notations.) 

The normal particle velocity component v(t) is ob- 
tained from the sound pressure p(x) by differentiating 
in the direction of the normal n: 

v(x) = (iX/2vpc)Op(x)/on . (8) 

Here pc is the characteristic impedance of the medium 
(air) facing the reflecting surface. 

With the standard wave equation for sound propaga- 
tion in two dimensions, one can easily execute the op- 
eration ap(x)/an, yielding 

v(x) = i(cosa, - • a,[1 - (ksX/2•r)2]'/2)/pc. (9) 

For values of the summation index s in the range 

-(Nw/h)(1 + sinai) -< s •< (Nw/k)(1 - sina,), (10) 
the square root in Eq. (9) will be real and will equal 
the cosine of the scattering angle: cosa•. This range 
of s corresponds to propagating reflected waves. For 
s outside the above range, the scattered waves will be 
evanescent with zero energy flux. Both types of waves 
are important in an exact solution for the unknown scat- 
tered amplitude a s. 

However, if, in a rough approximation, one neglects 
the evanescent waves and furthermore sets cosas= 1 
for the reflected waves, he obtains from Eqs. (4)-(7) 
and (9). 

4 , 
where the •' indicates that summation index s is re- 
stricted to propagating waves. 

Equation (11) is easily solved for the reflected waves. 
For the case of a normally incident wave (a•= 0) one 
has 

•] p,(x): [z(x) - oc]/[z(x) + pc], 02) 

from which the scattering amplitudes % are obtained by 
a Fourier transformation over the interval 0 -< x -< Nw, 
i.e., the period of the p,(x) [cf. Eq. (4)]: 

i fNw[z(x)_] Nw 
as = • Jo [-•-(•(x)7- •'j exp i2---•sx dx. (13) 

Next we make the reasonable assumption that the local 
impedance of a surface with wells such as shown in 
Fig. I ,has a local impedance 

Z(x) = pc/i tan[ 2vd(x)/•t], 

where d(x) is the depth of the well at x. Then 

[ 1 mo [- h Nw ] 
(14) 

If the d(x) axe constant over a width w that is small 
compared to the wavelength and then change abruptly 
to a new value (see Fig. 1) given by the quadratic-resi- 
due sequence [Eq. (1)]. 

d. (x/2:V)s., (15) 

then the Fourier integral can be approximated by a sum 
with the result, from Eqs. (2) and (3), 

I,,,1 =-- const.-- I/N, 
i.e., under the simplifying assumptions made, the amp- 
litude of each scattered wave is the same--in a sense, 
the quadratic-residue surface is an optimum diffusor. 

If one desires to go beyond this first-order approx- 
imation, one has to solve the equation ' 
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0 o 

FIG. 2. Scatter diagram of the diffusor shown in Fig. 1 for 
the design frequency f0 =11.5 kHz. Figures 2-6 are for a 
normally incident sound wave. 

0 o 

- 30• 30 o 
-90 o 

FIG. 3. Scatter diagram of the diffusor shown in Fig. 1 for 
f= 2fo= 22.9 kHz. 

z(x)v(x) :p(x), 

for the %, with p(x) as in Eqs. (5)-(7) and v(x) as in 
Eq. (9). With Z(x) periodic, this is accomplished by a 
Fourier transformation, which yields an infinite set of 
linear equations. We have found that by restricting this 
set to 50-100 terms (for N = 17), stable solutions for 
the a s can be obtained on sufficiently accurate compu- 
ters. All subsequent results were obtained by inverting 
matrices of size 99 x 99. 

For the surface shown in Fig. I (N= 17, w= 0.137ho, 
where • is the "design" wavelength) and vertically in- 
cident sound, we obtained the following values for the 
five scattering amplitudes: 

scattering angie as= -59 ø, -25 ø, 0 ø, 25 ø, 59 ø , 

scattering amplitude [a s [ = 0.59, 0.49, 0.30.0.49, 0.69. 
Thus, the true scattering amplitudes are seen to be not 
as uniform as the simplified theory predicted. How- 
ever, the energy fluxes, taking the projecting cosines 
into account, show remarkable uniformity: 

la• 12 cosa s = 0.24, 0.21, 0.09, 0.21,0.24, 
The sum of these energy fluxes equals one (as it should 
for a nonabsorbing surface) with an accuracy of better 
than 10 'a if the unrounded values are taken. 

The uniformity of the reflected energy fluxes can be 
described most effectively by the standard deviation • 
in decibels of the energy fluxes. For the above case, 
(r= 1.7 dB. Thus, while the scattering amplitudes are 
not uniform, the subjectively important standard devi- 
ation of the energy fluxes expressed in decibels is 
rather small. (The ear, in a laboratory situation, can 
distinguish level differences of the order of I dB.) 

Figure 2 shows the result of a measurement on a 
scale model of the surface structure at a frequency of 
11.5 kHz (corresponding to the design wavelength). Both 
the observed scattering angles and the energy fluxes 
are in good agreement with the theoretical values. 

What are the scattering properties of the quadratic- 
residue surfaces at wavelengths other than the design 
wavelength? For longer wavelengths, the ceiling will 
look more and more like a smooth mirror, and we may 
not expect good scattering for frequencies half an oc- 

rave or more below the frequency corresponding to X o. 

However, for wavelengths shorter than ko, the ceiling 
remains a good scatterer up to a limit given by prime 
number N: X> Xo/N and, more stringently, the width 
w: h> 2w. 

Specifically, for frequencies that are integer mul- 
tiples of c/k o (where c is the velocity of sound) the 
"reflection coefficients" are 

r•(f = mc /Xo) = exp(i2•rmk2 /N) . 

For re=l, 2,... ,N - 1, this sequence is a permuta- 
tion of the original sequence (m = 1) and has the same 
two-valued autocorrelation as the original sequence an d 
therefore uniform sound scattering properties within 
the simplified theory. 

Computations of the scattered energy fluxes for the 
surface shown in Fig. 1 for four different wavelengths 
give the following standard deviations 

•: (r=l.7dB, Xo/2:(y=3.3 dB, 

Xo/3:(r=3.7 dB, Xo/4:(r--2.4 dB. 

Experimental results for higher frequencies are 
shown in Fig. 3 (for 22.9 kHz), Fig. 4 (for 34.4 kHz), 
and Fig. 5 (for 45.9 kHz). As can be seen, there is still 
good diffusion even at the highest frequency. In fact, 
the higher the frequency the more scattering angles 
appear, in accordance with Eq. (10). 

For intermediate frequencies, i.e., frequencies that 

-90 ø 

0 o 

FIG. 4. Scatter diagram of the dfffusor shown in Fig. I for 
f= 3f0 = 34.4 kHz. 

961 J. Acoust. Soc. Am., Vol. 66, No. 4, April 1979 M.R. Schroeder: Binaural dissimilarity and concert halls 961 



0 a 

-90 ø - 60ø • 1• 90 ø 
FIG. 5. Scatter diagram of the diffusor shown in Fig. I for 
f= 4f0= 45.9 kHz. 

are not integer multiples of the design frequency, sim- 
ilarly good results are obtained. For ten randomly sel- 
ected frequencies, in the first and second octaves above 
the design frequencies the following average standard 
deviations were found computationally: 

(•o,•o/2): 8=2.4 dB, 

(•o/2, Xo/4): •=4.2 dB. 

Experimentally, too, good scattering is found at non- 
integer multiple frequencies. As a typical example, 
Fig. 6 shows the scatter diagram for 32.4 kHz. 

Finally, even for oblique incidence the wide-angle 
scattering properties are well maintained. Figure 7 
shows the scatter diagram for an incident angle of 
ota= 55 ø and a frequency of 22.9 kHz. 

How much better than random-surface diffusors are 
the quadratic residue diffusors? For four different 
diffusors with r•mdomly selected well depths, the fol- 
lowing standard deviations of the energy fluxes were 
obtained 

(Xo, Xo/2): • = 4.8; 5.2; 4.0; 4.7 dB, 

(•o/2,%/4): •=4.1;5.6;5.6;5.6dB. 

Thus, none of the four random diffusors is as good as 
the quadratic residue diffusors, even when averages 
over ten rando,•ly selected frequencies are considered! 

0 ø 

90 ø - 50 • •• 9o ø 
FIG. 6. Scatter diagram of the dfffusor shown in Fig. 1 for a 
nonintegral frequency f =32.4 kHz. 

-90 ø -60ø • 1• 90 ø 
FIG. 7. Scatter diagram for diffusor shown in Fig. 1 for an 
obliquely (c,• -55 ø) incident sound wave for j =22.9 kHz. The 
scattered energy covers the entire range from -90 ø to +90 ø, 
but is somewhat less uniformly distributed as for normal in- 
cidence at the same frequency (of. Fig. 3). 

V. TWO-DIMENSIONAL SCATTERERS 

So far one-dimensional sound scattering has been 
considered. In other words, if the wells on the ceiling 
run lengthwise, sound waves from the stage are dif- 
fused laterally from the ceiling, but are reflected mir- 
ror-like in the front-back dimension. 

If we desire also longitudinal diffusion, the ceiling 
surface needs structuring also in the longitudinal direc- 
tion. This is easily realized by replacing the quadratic 
residue sequence of Eq. (1), by a h•o-dimensional quad- 
ratic residue array of reflection coefficients. 

r•, •= exp[i2•r(k2 + 12)/N], (16) 
where a unit step in ! (from /to l+ 1) corresponds to a 
distance •vz in the front-back direction. 

Such two-dimensional diffusors were constructed on 

a model scale. Measurements confirmed the expected 
excellent diffusion over the entire solid angie. For an 
illustration of such a diffusor, see Fig. 8. 

FICa. 8. Photograph of scale model of two-dimensional dfffusor 
based on quadratic residue array, for efficient diffusion over 
the entire solid angle. 
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If "back scattering" (backward from the ceiling to the 
stage) is desired even at the highest frequency the long- 
itudinal widths w, should be made aquarter-wavelength 
rather than a half-wavelength. 

If esthetically preferred, the ceiling pattern given 
by Eq. (16) can be rotated around a vertical axis by, 
say, 45 ø without detrimental effect on sound diffusion. 

Vl. COMBINATION CEILING DESIGNS 

The two ceiling designs for maximizing early lateral 
reflections described heretoone based on geometrical 
principles, the other on sound diffraction--can be prof- 
itably combined. 

The diffraction principle allows either one or two- 
dimensional diffusion--with different frequency ranges, 
if desired. 

The amount of flexibility inherent in the proposals 
made here should be sufficient to achieve the prepon- 
derance of lateral reflections necessary for the high 
listener preference found in concert halls with large 
binaural dissimilarity. A first application of quadratic- 
residue diffusors to the design of a large hall is des- 
cribed by Marshall and Hyde. 25 
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