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Abstract
This paper introduces the second DIHARD challenge, the sec-
ond in a series of speaker diarization challenges intended to
improve the robustness of diarization systems to variation in
recording equipment, noise conditions, and conversational do-
main. The challenge comprises four tracks evaluating diariza-
tion performance under two input conditions (single channel
vs. multi-channel) and two segmentation conditions (diariza-
tion from a reference speech segmentation vs. diarization from
scratch). In order to prevent participants from overtuning to a
particular combination of recording conditions and conversa-
tional domain, recordings are drawn from a variety of sources
ranging from read audiobooks to meeting speech, to child lan-
guage acquisition recordings, to dinner parties, to web video.
We describe the task and metrics, challenge design, datasets,
and baseline systems for speech enhancement, speech activity
detection, and diarization.
Index Terms: speaker diarization, speaker recognition, robust
ASR, noise, conversational speech, DIHARD challenge

1. Introduction
Speaker diarization, often referred to as “who spoke when”,
is the task of determining how many speakers are present in
a conversation and correctly identifying all segments for each
speaker. In addition to being an interesting technical chal-
lenge, it forms an important part of the pre-processing pipeline
for speech-to-text and is essential for making objective mea-
surements of turn-taking behavior. Early work in this area
was driven by the NIST Rich Transcription (RT) evaluations
[1], which ran between 2002 and 2009. In addition to driving
substantial performance improvements, especially for meeting
speech, the RT evaluations introduced the diarization error rate
(DER) metric, which remains the principal evaluation metric in
this area. Since the RT evaluation series ended in 2009, diariza-
tion performance has continued to improve, though the lack
of a common task has resulted in fragmentation with individ-
ual research groups focusing on different datasets or domains
(e.g., conversational telephone speech [2, 3, 4, 5, 6], broadcast
[7, 8], or meeting [9, 10]). At best, this has made comparing
performance difficult, while at worst it may have engendered
overfitting to individual domains/datasets resulting in systems
that do not generalize. Moreover, the majority of this work has
evaluated systems using a modified version of DER in which
speech within 250 ms of reference boundaries and overlapped
speech are excluded from scoring. As short segments such as

backchannels and overlapping speech are both common in con-
versation, this may have resulted in an over-optimistic assess-
ment of performance even within these domains1.

It is against this backdrop that the JSALT-2017 workshop
[11] and DIHARD challenges2 emerged. The DIHARD series
of challenges introduce a new common task for diarization that
is intended both to facilitate comparison of current and future
systems through standardized data, tasks, and metrics and pro-
mote work on robust diarization systems; that is systems, that
are able to accurately handle highly interactive and overlapping
speech from a range of conversational domains, while being re-
silient to variation in recording equipment, recording environ-
ment, reverberation, ambient noise, number of speakers, and
speaker demographics. As with the NIST RT evaluations, DER
is adopted as the primary evaluation metric, but without use of
collars or exclusion of overlapping speech. There are no con-
straints on training data, with participants allowed to use any
combination of public/proprietary data for system development.

The initial DIHARD challenge (DIHARD I) [12] ran during
the spring of 2018 and attracted registrations from 20 teams, of
which 13 submitted systems. As expected, state-of-the-art sys-
tems performed poorly, with final DER on the evaluation set for
the top systems ranging from 23.73% [13] when provided with
reference speech activity detection (SAD) marks to 35.51% [14]
when forced to perform diarization from scratch. These error
rates rates are more than double the state-of-the-art for CALL-
HOME [15] at the time [4, 5]. For some domains, error rates
for the best systems exceeded 49% when using reference SAD
and 75% when performing diarization from scratch!

The second DIHARD Challenge (DIHARD II) [16], like
its predecessor, examines diarization system performance un-
der two SAD conditions: diarization from a supplied refer-
ence SAD and diarization from scratch. As with DIHARD I,
it includes a single channel input condition utilizing wideband
speech sampled from 11 demanding domains, ranging from
clean, nearfield recordings of read audiobooks to extremely
noisy, highly interactive, farfield recordings of speech in restau-
rants to child language data recorded in the home using LENA
vests. Unlike DIHARD I, it additionally offers a multichan-
nel input condition requiring participants to perform diarization
from farfield microphone arrays of dinner party speech drawn

1See, for instance, the release of IBM’s diarization API in 2017.
The feature worked well for simple cases, but when run by users on
real inputs, the performance was found to be lacking, especially for
overlaps, back-channels, and short turns.

2https://coml.lscp.ens.fr/dihard/index.html



from the CHiME-5 corpus [17]. For the first time, we also
provide participants with baseline systems for speech enhance-
ment, SAD, and diarization, as well as results obtained with
these systems for all tracks.

2. Tracks
The challenge features two audio input conditions:

• Single channel – Systems are provided with a single
channel of audio for each recording. Depending on the
recording source, this channel may be taken from a sin-
gle distant microphone, a single channel from a distant
microphone array, a mix of head-mounted or array mi-
crophones, or a mix of binaural microphones.

• Multichannel – Each recording session contains output
from one or more distant microphone arrays, each con-
taining multiple channels. Participants are instructed to
treat the arrays separately, producing one output per ar-
ray. They are free to use as few or as many of the chan-
nels on each array as they wish to perform diarization.

As system performance is strongly tied to the quality of the
SAD component, we also include two SAD conditions:

• Reference SAD – Systems are provided with a refer-
ence speech segmentation that is generated by merging
speaker turns in the reference diarization.

• System SAD – Systems are provided with just the raw
audio input for each recording session and are responsi-
ble for producing their own speech segmentation.

Together, this yields the following four evaluation tracks:

• Track 1 – single channel audio using reference SAD.

• Track 2 – single channel audio using system SAD.

• Track 3 – multichannel audio using reference SAD.

• Track 4 – multichannel audio using system SAD.

All teams are required to register for at least one of track 1 or
track 3.

3. Performance Metrics
As in DIHARD I, the primary metric is DER [1], which is the
sum of missed speech, false alarm speech, and speaker mis-
classification error rates. Because systems are provided with
the reference speech segmentation for tracks 1 and 3, for these
tracks, it exclusively measures speaker misclassification error.
This is the metric used to rank systems on the leaderboard.

For each system we also compute a secondary metric, Jac-
card error rate (JER), which is newly developed for DIHARD
II. JER is based on the Jaccard similarity index [18, 19], a met-
ric commonly used to evaluate the output of image segmenta-
tion systems, which is defined as the ratio between the sizes of
the intersections and unions of two sets of segments. An opti-
mal mapping between speakers in the reference diarization and
speakers in the system diarization is determined and for each
pair the Jaccard index of their segmentations is computed. JER
is defined as 1 minus the average of these scores, expressed as
a percentage. That is, it is the mean of Eq. 1 across all refer-
ence speakers ref , where TOTAL is the duration of the union of
reference and system speaker segments, FA is the total system
speaker time not attributed to the reference speaker, and MISS
is the total reference speaker time not attributed to the system
speaker. It ranges from 0% in the case where each reference

Table 1: Overview of DIHARD datasets. For the CHiME-
5 (multichannel) data, each Kinect is treated as a separate
recording.

Input condition Set Duration (hours) # Recordings

single channel dev 23.81 192
eval 22.49 194

multichannel dev 262.41 105
eval 31.24 12

speaker is paired with a system speaker with an identical seg-
mentation to 100% in the case where none of the system speak-
ers overlap any of the reference speakers.

JERref =
FA + MISS

TOTAL
(1)

All metrics are computed using version 1.0.1 of the dscore
tool3 without the use of forgiveness collars and with scoring of
overlapped speech.

4. Datasets
4.1. Overview

The DIHARD II development and evaluation sets draw from
a diverse set of sources exhibiting wide variation in recording
equipment, recording environment, ambient noise, number of
speakers, and speaker demographics. The single channel input
condition (tracks 1 and 2) dataset is a superset of that used in
DIHARD I, though 6 hours of additional material have been
added to ensure that all domains are represented in both the de-
velopment and evaluation set. Additionally, two domains where
the DIHARD I annotation was deemed suspect (child language
and web video) have been entirely resegmented. For the multi-
channel input condition (tracks 3 and 4) we use the multi-party
dinner recordings originally collected for and exposed during
the CHiME-5 challenge [17]. The development and evaluation
sets are summarized in Table 1.

The development set includes reference diarization and
speech segmentation and may be used for any purpose includ-
ing system development or training. As with DIHARD I, there
is no training set with participants free to train their systems on
any proprietary and/or public data, excluding datasets. Both the
development and evaluation sets will be submitted for publica-
tion via LDC at the end of the evaluation.

4.2. Single channel data (tracks 1 and 2)

The single channel input condition development and evaluation
sets consist of selections of 5-10 minute duration samples drawn
from 11 conversational domains, each including approximately
2 hours of audio. The full set of domains is described below
with LDC Catalog numbers where appropriate. Unless other-
wise specified, all speech is English, though not necessarily by
native or even fluent speakers. All audio is distributed via LDC
as 16 kHz, monochannel FLAC files.

• audiobooks – amateur recordings of public domain En-
glish works drawn from LibriVox; care was taken to
avoid overlap with LibriSpeech [20] (unpublished)

• broadcast interview – student produced interviews with
newsmakers of the day taken from a late 1970s college

3https://github.com/nryant/dscore



radio show; recorded on open reel tapes before being
digitized and contributed to LDC (unpublished)

• child language – day-long recordings of 6-18 month
old vocalizations collected at home by University of
Rochester researchers for the SEEDLingS corpus [21]

• clinical – interviews with 12-16 year old children in-
tended to determine whether or not they fit the clinical di-
agnosis for autism; all recordings conducted at the Cen-
ter for Autism Research (CAR) of the Childrens Hospital
of Philadelphia (CHOP) using a mixture of cameras and
ceiling mounted microphones (unpublished)

• courtroom – oral arguments from the 2001 term of the
U.S. Supreme Court that were digitized for the OYEZ
project; recordings are summed from individual table-
mounted microphones, one per speaker (unpublished)

• map task – recordings of map tasks in which one par-
ticipant, the leader, describes a route drawn on a map
to the other participant, the follower, who attempts to
draw the same route on a copy of the map lacking the
route and optionally lacking some landmarks; audio was
recorded via close-talking microphones under quiet con-
ditions (previously released as LDC96S38)

• meeting – meetings with between 3 and 7 participants,
each recorded with a variety of close-talking and distant
microphones, from which a single, centrally located dis-
tant microphone was selected; the development set draws
from the NIST Spring 2004 Rich Transcription Evalua-
tion (LDC2007S11 and LDC2007S12) while the evalu-
ation set draws from previously upublished recordings
conducted for the DARPA Robust Omnipresent Auto-
matic Recognition (ROAR) project at LDC in 2001

• restaurant – ≈1 hour sessions involving 3-6 diners
recorded on a binaural microphone worn by one partici-
pant in restaurants with varying room acoustics and noise
levels; inspired by the NSF Hearables Challenge and ex-
tended by LDC for DIHARD (unpublished)

• sociolinguistic field recordings – sociolinguistic inter-
views recorded under field conditions during the 1960s
and 1970s; recorded under diverse locations and condi-
tions with subjects ranging from 15 to 81 years of age
and representing diverse ethnicities, backgrounds, and
dialects of world English; the development set draws
from SLX (LDC2003T15) and the evaluation set from
DASS (LDC2012S03 & LDC2016S05)

• sociolinguistic lab recordings – sociolinguistic inter-
views recorded as part of MIXER6 (LDC2013S03) un-
der quiet conditions in a controlled environment; ses-
sions were recorded with a variety of close-talking and
distant microphones from which a single, centrally lo-
cated distant microphone was selected

• web video – English and Mandarin amateur videos col-
lected from online sharing sites (e.g., YouTube and
Vimeo) as part of the Video Annotation for Speech Tech-
nologies (VAST) [22] collection (mostly unpublished)

4.3. Multichannel data (tracks 3 and 4)

The multichannel input condition development and evaluation
sets are drawn from the CHiME-5 dinner party corpus [17], a
corpus of conversational speech collected during dinner parties
held in real homes. The development set combines the CHiME-
5 training and development sets and encompasses 45 hours of

dinner parties from 18 homes. The evaluation set is identical
to the CHiME-5 evaluation set and consists of 5 hours of din-
ner parties from 2 homes. Each party was recorded using 6
Microsoft Kinect devices (4 channel linear arrays) distributed
throughout the home in such a way that the conversation was al-
ways present on each array. Due to a combination of clock drift
and random frame dropping, the Kinects within each record-
ing session exhibit massive desynchronization, both with each
other and with the binaural recording devices worn by partici-
pants. For this reason, each Kinect device is treated separately
for the purpose of the evaluation. All audio is distributed via the
University of Sheffield as 16 kHz WAV files.

4.4. Processing

A limited number of recordings contained regions carrying per-
sonal identifying information (PII), which were removed prior
to publication. For the clinical and restaurant domains, this
was done at LDC by low-pass filtering using a 10th order But-
terworth filter with a passband of 0 to 400 Hz. To avoid abrupt
transitions in the resulting waveform, the effect of the filter was
gradually faded in and out at the beginning and end of the re-
gions using a ramp of 40 ms. In the case of the sociolinguis-
tic field recordings domain and the CHiME-5 data, PII was re-
moved by the original creators of the corpora. In the former
case, PII was replaced by tones of matched duration, while in
the latter case it was zeroed out. PII containing regions are ig-
nored during scoring.

4.5. Annotation

Reference segmentation and speaker labeling was produced by
annotators at LDC using a tool equipped with playback, wave-
form and spectrogram display. Annotators were instructed to
split on pauses > 200 ms, where a pause was defined as any
stretch of time during which the speaker was not producing vo-
calization (e.g., backchannels, filled pauses, singing, speech er-
rors and disfluencies, infant babbling or vocalizations, laughter,
coughs, breaths, lipsmacks, and humming) of any kind. Bound-
aries were placed within 10 ms of the true boundary, taking care
not to truncate sounds at edges of words (e.g., utterance-final
fricatives). Where individual close talking microphones were
available for speakers, annotation was performed separately for
each speaker using their individual microphone. Due to time
constraints, this manual segmentation process could not be im-
plemented for the multichannel development data; for this data,
segmentation was taken from the turn boundaries established
during the original CHiME-5 transcription.

An additional post-processing step was necessary for the
CHiME-5 annotation to correct for the lack of synchroniza-
tion between binaural recording devices and Kinects. For each
Kinect, the lag between that array and the binaural recording de-
vices was estimated at regular intervals using normalized cross-
correlation. The speech boundaries etablished by annotation on
the binaural devices were then corrected for each Kinect using
these estimated lags.

5. Baseline system
5.1. Speech enhancement

For speech enhancement we use a densely-connected LSTM
architecture [23, 24, 25] trained to predict the ideal ratio
masks (IRM) [26] of speech from log-power spectra (LPS) fea-
tures. The model is trained via progressive multi-target learning



[23, 27] using 400 hours of noisy speech produced by corrupt-
ing clean utterances from WSJ0 [28] and a 50 hour Chinese
speech corpus from the 863 Program [29]. Utterances were cor-
rupted using 115 noise types [23] at 3 SNR levels (-5dB, 0dB,
and 5dB). The trained models as well as scripts for applying
them, are distributed through GitHub4.

5.2. Beamforming

For the multichannel tracks, we use weighted delay-and-sum
beamforming as implemented in BeamformIt [30]. Beamform-
ing is applied independently for each Kinect in each session
using all four channels following the CHiME-5 recipe [17].

5.3. Speech activity detection

The baselines for tracks 2 and 4 use WebRTC’s5 SAD as imple-
mented in the py-webrtc Python package6. Scripts for perform-
ing SAD using the same settings used to obtain the baseline
results are distributed through GitHub4.

5.4. Diarization

The diarization baseline is based on the previously published
Kaldi [31] recipe7 for JHU’s submission to DIHARD I [13]. At
a high level, the system performs diarization by dividing each
recording into short overlapping segments, extracting x-vectors
[32, 33], scoring with probabilistic linear discriminant analysis
(PLDA) [34], and clustering using agglomerative hierarchical
clustering (AHC) [35]. In contrast to the original JHU system,
we omit the Variational Bayes resegmentation step [36]. The
trained models are distributed through GitHub8.

The x-vector extractor configuration is identical to that used
in previous speaker recognition and diarization systems [33, 13]
with two exceptions: i) 30 dimensional mel frequency cepstral
coefficient (MFCC) features are used instead of mel filterbank
features; ii) the embedding layer uses 512 dimensions. MFCCs
are extracted every 10 ms using a 25 ms window and mean-
normalized using a 3 second sliding window. For training we
use a combination of VoxCeleb 1 and VoxCeleb 2 [37, 38] aug-
mented with additive noise and reverberation according to the
recipe from [32]. Segments under 4 seconds duration are dis-
carded, resulting in a training set with 7,323 speakers. Rever-
beration is added by convolution with room responses from the
RIR dataset [39], while additive noises are drawn from the MU-
SAN dataset [40]. At test time, x-vectors are extracted from 1.5
second segments with 0.75 second overlap.

Following extraction, x-vectors are pre-processed to per-
form domain adaptation to the DIHARD II dataset. This is done
by normalizing with a global mean and whitening transform
learned from the DIHARD II development set. The whitened
x-vectors are then length normalized [41] and used to train a
Gaussian PLDA model [34] using a subset of VoxCeleb consist-
ing of segments of at least 3 seconds duration. Following PLDA
scoring, clustering is performed using AHC with the threshold
set by minimizing DER on the development data.

4https://github.com/staplesinLA/denoising_
DIHARD18

5https://webrtc.org/
6https://github.com/wiseman/py-webrtcvad
7https://github.com/kaldi-asr/kaldi/tree/

master/egs/dihard_2018/v2
8https://github.com/iiscleap/DIHARD_2019_

baseline_alltracks

Table 2: Baseline performance (measured by DER and JER)
on dev and eval sets for all tracks. The Enh. column indicates
whether or not speech enhancement was applied prior to SAD.

Track Enh. DER (%) JER (%)
Dev Eval Dev Eval

Track 1 no 23.95 25.37 53.94 57.39
Track 2 no 50.34 53.37 72.21 75.55
Track 2 yes 40.95 42.69 62.04 65.86
Track 3 no 59.23 51.33 69.46 67.56
Track 4 no 88.28 84.53 89.15 86.23
Track 4 yes 83.99 80.05 85.50 83.13

5.5. Baseline results

DER and JER of the baseline system on both the development
and evaluation sets for each track are presented in Table 2. The
speech enhancement module is used only for tracks 2 and 4 as
a pre-processing front-end for the SAD pipeline as the diariza-
tion system did not show improvements using the enhanced au-
dio. The scores obtained by the challenge baseline are quite
high, with track 1 DER roughly in line with the performance
of the best DIHARD I systems [13, 14, 24] and track 2 DER
15% higher than for DIHARD I, which we suspect reflects a
combination of superior SAD components in those systems and
the mroe careful segmenation for the child language and web
video domains in DIHARD II. Error rates are noticeably higher
for track 3 and 4, reaching 59.23% and 83.99% respectively,
though, again, these rates are roughly in line with those ob-
served for the best DIHARD I systems on the two most difficult
domains in that challenge: restaurant and child language.

6. Conclusion
The field of speaker diarization has changed drastically in the
two short years we have been running this challenge. In the lead
up to DIHARD I, the research community was fragmented and
most research concentrated on relatively easy datasets using for-
giving evaluation metrics. This both made comparison of sys-
tems difficult and led some to believe that diarization was rela-
tively solved and uninteresting. However, we were pleased by
the response to DIHARD I, both during the evaluation and after,
demonstrating that there is interest in robust diarization. This
renewed energy is on display in DIHARD II, which as of the In-
terspeech submission deadline has 48 registered teams from 17
countries, more than doubling the number of teams registered
for DIHARD I. It is also evident in the recent announcement
of two other challenges with diarization components: Fearless
Steps and VoxSRC. We hope that this year’s contributions lead
to marked progress toward the goal of truly robust diarization.
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