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126 David Sankoff I Suzanne Laberge 

switching rates in sequences and in unconstrained successive pairs for a 
number of speakers. For this analysis, we deliberately chose speakers 
who showed at least a minimal degree of switching behavior in their 
sequence data. Nevertheless, as Table I shows, the sequencing context 
is much more restrictive than just simple proximity between variables. 
Indeed, the switching rates for unconstrained pairs are not clearly differ­
ent from the overall prop0rtion of the variants, indicating little or no effect 
of stylistic homogeneity. This also explains why an exhaustive examina­
tion of switching in unconstrained pairs for all speakers is of little interest. 

Turning to the other variables, we again encounter a data problem. 
There are too few sequence-constrained contexts for switching from ils to 
on in our corpus to permit analysis. However, almost 30 speakers do 
show both enough variation in this variable and enough sequence­
constrained p~irs for on to ils switches to warrant the graphical repre­
sentation in Figure 3. Although less dramatic than the previous two, the 
tendency is for the same effect to be present, restricting switching in the 
sequence environment. 

The case of on/nous is somewhat more clear-cut. The data problem here 
is that there are less than 200 tokens of nous as a subject clitic in our 
corpus. These are, however, concentrated among a small number of 
conservative speakers and we can portray their switching behavior as in 
Figure 4. Once again the sequencing constraint is unequivocally present, 
though it cuts out perhaps only half of prospective switches rather than 
the two-thirds suggested in the case of on/tu-vous•. 
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Modeling of Duration 
Patterns in Reiterant 
Speech 

Mark Liberman 

INTRODUCTION 

9 

This chapter reports on some preliminary attempts at quantitative 
modeling of duration patterns in English. The intent is to demonstrate the 
feasibility and interest of such modeling, rather than to present a particu­
lar model as a finished product. I will begin by suggesting why duration 
data is an especially appealing candidate for quantitative modeling, and 
will describe then the particular body of data that was used, the modeling 
method, and some of the results. 

Why Speech Timing Is Interesting 

Patterns of duration in speech are quite reproducible. If the same 
speaker repeats the same utterance a number of times, without changing 
the stress pattern or the intonation, the durations of comparable segments 
or syllables (for those aspects of the speech signal which have conve­
niently measurable durations) typically have quite small variances: 
Standard deviations of 10 and 15 msec are fairly typical. This remains 
true, in my experience at least, even when there are fairly long periods of 
time between repetitions. Large variations in overall rate increase the 
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128 Mark Liberman 

variance somewhat, and variations across speakers also blur the sharp­
ness of the patterns, but there remains substantial agreement. 

An understanding of such duration patterns, and of the processes which 
geJ;J.~rate theII?:, is of great interest both practically and theoretically. 
Practical applications include speech synthesis by rule and speech recog­
nition, for which any source of information describing reliable connec­
tions between language and sound is useful. The theoretical interest _Qf 
this area of study has several aspects, of which I will mention three~ 
lingl!i~tic ~Q_nst~J_§ such as stress pattern, syllabic structure, surface 
~ituen~tu__r_e, and so on, affect timing, and an understandmgof 
th_~~~ E~!,:1,ti9_I).Ships p~o_-y__i<:!_e§ _ evidence- wluch-can help to choose among 
a_lt~rnativ~}i_11gui~!ic theo~_~s. The relative- stability of duration patterns, 
previously mentioned, -means that in principle- a sub-stantiaLamount of 
ii!fQ!"__I!l'!_!i~E-_iS ~vagable fo~~h eff_o__rts__:, S-ec~~there is reason to sup­
pose that rr;t!lch of the information :R_resenf inpat_tems of timing is used by 
~~perceptual sy~~m. -This-raises, in a very pointed way, the perceptual 
proble~ pQ~ed_.by the dynamic aspects of_s:[?_eech, th~bleJD_Qfh_o_w_oJlr 
perceptions ori~I:_]t themselve§_ ~mid_ the incoming stream of acoustic in­
formation:not only ''normalizi;g;' the varjc:tpJe~dy~amics of acoustic 
Cll~~,_l,llt actually using ;_hls variatioI1_ to pr~vic:l~jl}fo_nn_ation_of value to 
th~ decoding process. (~sp~ech rhythms (exemplified for present 
purposes in patterns of duration) c~n b_~_~QQi~dj11_EeJation to the probl~!!!__, 
of_~~~~c organization in other human activities, notably music. 

Some Problems 

Although the study of speech timing is interesting and important for the 
reasons just mentioned, it faces a number of very substantial difficulties. 
Two classes of these difficulties are especially worthy of note: the number 
and nature of factors influencing duration, and the arbitrariness of dura­
tion measurements. 

There are a large number of factors known to influence duration in 
speech. A nonexhaustive list includes the nature of the segment in ques­
tion, the local segmental environment, syllabification, stress pattern, con­
stituent structure, and intonation contour. Each of these variables has a 
large number of possible values. It is clearly not feasible to vary all of 
them orthogonally-life is too short. Indeed, many of them are nonorthog­
onal by nature. The usual practice is to pick some feature (e.g., position 
in the word) and vary it systematically, while trying to obtain some 
reasonable sampling of values for other variables. A lot has been learned 
by such techniques; however, in averaging across categories, much of the 
precision of temporal control is thrown away. 

Mndeling of Duration Patterns in Reiterant Speech 129 

It has long been known that linguistic phonetic elements do not corre­
spond to discrete portions of the acoustic signal, but rather produce a 
complex patter~ of overlapping acoustic effects. Thus it is in some very 
real sense meanmgless to talk about the duration of phonetic elements in 
speech. When phonet!cians use this somewhat loose way of talking, they 
refer to the fact that m many cases there are local discontinuities in the 
acoustic signal which ~an be taken to specify the boundaries of something; 
generally these are pomts of closure and release, points of voicing onset 
or offset, the beginning and end of turbulence, and so on. Such points can 
often be measured with an accuracy of 5 msec or better; it is by reference 
to such points that we discuss segment durations or syllable durations. But 
sometimes there are several such measurable points in close 
succession-in the case of aspirated stops, for example, the interval of 
aspirati_on could be assigned to the stop, to the vowel, or to neither (with 
three different _results for the body of data a theory of speech timing is 
asked to descnbe). Furthermore, we cannot even be sure that it is by 
reference _to these apparent discontinuities in the acoustic signal that 
human bemgs reckon duration. In fact, there is good reason to suppose 
that this may not be the case-segments such as [y] or [r] do not create 
any such discontinuities, but duration cues do not seem to be obscured in 
utterances that happen to contain such segments. So from a theoretical 
poii:i-t_ of view there is a very serious amount of arbitrariness in any 
dec1S1on abo_ut how to interpret duration measurements, even for those 
cases where measurements are possible. 

A Solution 

In order to get around such difficulties, phoneticians have traditionally 
resorted to nonsense. The advantages of nonsense syllable strings over 
(more or less) natural speech are obvious-segmental variables can be 
eliminated from the model, to whatever extent is desired, and the neces­
sary arbitrariness of measurement criteria can be minimized by reducing 
the number of boundary types to one or two. Of course, the usual sort of 
nonsense words will not do for the study of phrase-level prosodic effects, 
so Lynn Streeter and I developed 1 the idea of mimicking a natural utter­
ance while substituting some nonsense syllable, such as ma, for each 
syllable of the original. 

This technique,forwhichNakatani andSchaffer (1976) have suggested 

1Actually, we redeveloped this idea, which was previously used by various Swedish 
researchers and reported in (apparently) unpublished manuscripts referred to in Lindblom 
and Rapp (1973). 
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300~-------------------------
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1 2 3 4 5 6 

Syllable position 

Cunning scholars deciphered the tab/els 
Thirteen teachers were f1.1r/01.1ghed in August 
Intense actors ore bothered by coffee 

7 8 9 10 

Figure 1. Syllable duration in reiterant speech imitations of three sentences. 

the term reiterant speech (RS), is described and justified in some detail in 
Liberman and Streeter (1976). The relevant findings of that study can be 
summarized as follows: (a) The reproducibility of durations in reiterant 
speech is comparable to what is found in natural speech; and (b) utter­
ances with the same stress pattern and constituent structure produce 
nearly indistinguishable reiterant speech durational patterns, even when 
the durations of the originals are very dissimilar due to segmental effects. 

Figure 1, taken from Liberman and Streeter (1976), presents syllable 2 

durations in mama imitations of three· target sentences: 

(1) 

(2) 

(3) 

Cunning scholars deciphered the tablets. 

Thirteen teachers were furloughed in August. 

Intense actors are bothered by coffee. 

2For simplicity of exposition, we will use syllable (rather than segment) durations 
throughout this paper. In some ways segment durations are more interesting, but the issues 
involved are not relevant to this paper. 
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Note that the first two cases, in which stress and constituent structure 
are nearly the same, have very similar duration patterns, while the third 
case, in which the first word has a different location of main word stress, 
differs greatly in the first two positions, but remains quite similar to the 
previous cases in positions 2 through 10. 

MATERIALS AND METHODS 

It appears that different utterances with the same prosodic structure 
(stress and constituent structure) have the same reiterant speech timing 
pattern. It follows that we should, in principle, be able to predict such RS 
timing patterns as a function of the prosodic structure of the target 
utterance. In order to attempt such a prediction, we need three things: (a) 
RS duration data for some set of utterances; (b) a precise definition of the 
notion prosodic structure for those utterances; and (c) some assumption 
about the function which maps prosodic structure, as defined in (b ), into 
durations, as measured in (a). 

Data 

The modeling described in this· chapter is based on a body of data 
collected by Lynn Streeter and myself for other purposes. It consists of20 
utterances (and their RS imitations) spoken at least 10 times each by one 
speaker, and 17 utterances (and their RS imitations) spoken at least 10 
times by a second speaker. The data from the second speaker was col­
lected in two sessions about 6 months apart; the first speaker's data was 
collected in three sessions. (Some of this same material was used in 
Liberman & Streeter, 1976.) In each recording session, the speaker be­
ing recorded read a target sentence from a card, using a normal speak­
ing rate and intonation pattern, and then after a suitable pause, imitated 
the target sentence by substituting a [ma] for each of its syllables, while 
attempting to preserve the original rhythm and intonation. After all the 
utterances in the experimental set had been produced, the cards were 
shuffled and the process repeated a total of 10 times to obtain the 10 
tokens of each target sentence and each mama imitation to be averaged. 

Durations in the target utterances were measured by means of a com­
puter wave-form editor. Duration of the RS versions were measured 
automatically by a computer pattern-recognition technique, based on the 
voice/unvoiced/silence decision algorithm described in Atal and Rabiner 
(1976), and modified to decide among the three categories [m], [a], and 

· silence. 
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Prosodic Feature Set 

Nine binary features were chosen as a means of encoding prosodic 
structure. These features cover three general areas: stress, boundary 
location, and rhythmic grouping. Binary features were used in order to 
permit the model to take a maximally simple form, as described in the 
following subsection. · 

Before being coded in terms of these features, an utterance is divided 
into feet, which generally run from main word stress to main word stress. 
Normally, then, foot boundaries are inserted in front of the main stress of 
every content word, and nowhere else. There are two exceptions: (a) In 
sequences of monosyllables such as new blue boat, where the stress 
pattern would be classically described as 2 3 1, the medial monosyllable is 
not given as a separate foot boundary, resulting in the division I new blue 
I boat; and (b) a function word which is a stress maximum is taken to 
begin a foot, as in the I cat is Ion the I mat. Also, it is assumed that feet are 
interrupted by major phrase boundaries. 

Our nine prosodic features can now be described as follows: 

1. Stress. This feature is assigned to every stressed syllable. 
2. Main foot stress. This feature is assigned to the stressed syllable at 

the beginning of each foot. 
3. Main phrase stress. This feature is assigned to stressed syllables 

which have a major pitch accent. Typically there is one such syllable 
in each phrase. Obviously, every main phras~ stress must also be a 
main foot stress. 

4. End of word. This feature is assigned to the last syllable of each 
lexical word. 

5. End of phrase. This feature is assigned to the last syllable of each 
major phrase (where there is a noticeable pause or pseudopause). All 
but one of the utterances in the data set used for this chapter 
consisted of exactly two phrases. 

6. Start of trochee. This feature is assigned to those main foot stresses 
which are followed by at least one syllable within the same foot. 
Since two or more following syllables are also consistent with this 
feature, the word trochee must be taken in a loose sense. V) 

7. Start of dactyl. This feature is assigned to those main foot stresses 
which are followed by at least two syllables within the same foot. 

8. Second position in dactyl. This feature is assigned to the syllable 
immediately following the main foot stress of a dactylic foot. 

9. Third position in dactyl. This feature is assigned to the last syllable in 
a dactylic foot. 

a 
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Features 1-3 encode information about stress level; features 4 and 5 
encode boundary information; features 6-9 provide information about 
rhythmic grouping. These features were chosen with two ends in view: (a) 
to include some representation of factors known or alleged to influence 
duration; and (b) to be definable with minimum opportunity for disagree­
ment regarding their values in a particular case. Note that no theoretical 
or practical validity is being claimed for the details of this feature set.:-it is 
simply a conveniently definable set offeatures, which is likely to be highly 
correlated with whatever the "true" feature set is. 

Assumptions of the Model 

For a first attempt, I adopted a rather simple view of the function 
mapping prosodic feature specifications into durations. We assume 
n well-defined prosodic features. Each element in the data set (syllable, 
segment, or whatever) is marked either + or - for each such feature. 
Then the predicted duration for a given syllable or segment is determined 
by adding, to a fixed base duration, a fixed quantity (which can be positive 
or negative) for each prosodic feature which is present. 3 Thus the influ­
ences of the various features are assumed to be additive and independent. 
Symbolically, we assume that 

(1) 

where D is the predicted total duration of a given segment or syllable; B is 
the (invariant) base duration; ai is 1 if the ith feature is present, 0 if the ith 
feature is absent; andfi is the durational increment (plus or minus) attrib­
uted to the ith feature. 

Since we have a list of observed durations, and specification of a 
prosodic feature vector for each one, multiple linear regression will give 
us values for the base duration and feature-associated durations which 
minimize the (squared) prediction error. 

RESULTS 

In order to see how successful this procedure is at predicting novel 
data, the data set for each of the two subjects was divided into two subsets 

30f course, when different phonetic elements are examined, a different base duration and 
set of feature-associated durations is assumed in each case. One would like the feature­
associated duration values to be predictable, at least for a given type of phonetic element, 
either by being invariant or by being some function of that element's base duration. Since the 
only phonetic element considered in this chapter is the syllable [ma], we avoid such questions 
for the present. · 
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134 Mark Liberman 

of 10 utterances each in the case of the first speaker, and of 8 and 9 
52 

utterances in the case of the second speaker. Since the average number of 
-::::,._ 

-::::,._ S' 
syllables per utterance was 10, each subset contained about 100 syllables. 

-::::,._ 
~ ?:> "' ,_ 

The parameter values resulting from regression on one of the data subsets 1/ ~ ~ co 
for each of the speakers are given below: ~ 

r-- C: -iS 
(2) .=! ~ - ~ 

"' Features: Base 2 3 4 5 6 7 8 9 
-c 0 ~ C. 

~ ~ -0 -0 Q) 

Subject A: 
Q) ~ II) :c <I.> 

179 18 33 34 13 48 -7 -15 -12 10 > (.J ell ~ 
Subject B: 174 27 30 22 16 55 5 -22 -21 8 

Q) -0 
(-c:::i 

'<t~ 

<I.> 

"' Q) ~ ..Cl 
0 C. 

~ 
C") ~ Figure 2 shows some superimposed plots of predicted versus observed :;:::: 

durations for three utterances, using the parameter values given for Sub- N ~ 
ject A in (2) and taking the observed durations from the same data subset 
that was used to generate those parameters. These cases were chosen as 0 0 0 

0 0 ~ fairly typical of their kind. For the data subset in question, the percentage C") N 

of variance accounted for by the model was 88%, and the mean absolute ( :iasw) U0!leJnO 

deviation (average of the absolute value of prediction versus observation) 
was 11 msec. Percentage of variance accounted for is not a very meaning-
ful measure in this kind of situation, but it will serve for rough comparison 
with the other conditions described below. 

In the data subset for which Subject B's parameters were obtained, the 
$:! $:! percentage of variance accounted for was 92%, _and the mean absolute 

~ ~ deviation was 9 msec. Because of the nonorthogonality of the feature set, "' <I.> "' .c::, 
~ it is difficult to compute the significance of these results, but we can offer <I.> 

co ~ ~ 
for comparison the results of running the same regression, with the same ~ B' 
prosodic feature matrix, using durations from the original target utter- C: ~ r-- C: -~ r--

:~ ~ .=! i:i ances, or using the set of RS durations randomly permuted. Using the - B' -c ~ ~ ·;;; 
target utterance durations, 63-68% of the variance was accounted for by -c 0 I:: C. -@ '.§: C. e the model, with mean absolute deviations of 38-44 msec. Using randomly ~ Q) Q) I::) 

II) ::c 13 II) ::c ~ permuted RS durations, approximately 5-15% of the variance was ac- C'O '~ ..!!:! = "fil counted for. '<t~~ 
>- !!> 

'<t er., ~ 
Figure 3 shows a similar set of plots for the case in which parameters 

<:) 
~ ~ 

C") 
<:) 

C") ~ derived from the first subset of data were employed to predict durations in !;:: 
~ <I.> 

the second subset. For the second subset as a whole, duration prediction N N ~ 

on the basis of parameters derived from the first subset accounted for 85% 
of the variance in the case of one subject, and 82% in the case of the 0 0 0 0 0 0 

second subject. The mean absolute deviations were 12 and 18 msec, 
0 0 !:? 0 0 !:? C") N C") N 

respectively. ( :iasw) U0!leJnO ( :iasw) U0!Jerna 
It is worth noting that the data subsets were not selected randomly, but 

rather tended to respect the boundaries of different data collection ses-
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S2 sions. In the case of the data represented in Figure 3, the speaker in 
q, question spoke somewhat faster in the session represented· in the second 

°' ~ c:s, data subset, an effect which is especially noticeable in Figure 3(c). This 
co ~ last case has the highest mean absolute deviation of any of the across 

I subset predictions (nearly 30 msec). -!;;'; .... g ~ To help clarify the modeling method, the duration prediction for the 
·.;::: I::) 

·.;; -!;;'; utterance in Figure 3(a), cunning scholars deciphered the tablets, is given 
"C "C 

-0 g_ !3 ~ a., .e a., ~ in Table 1 . 
;:: <,,) 

a., "C 
lO :c -~ 

en 
~ 

cc ½ 
..c =-... c:;, C. > <:::) 

'Sj" Cl.)~ 

~ DISCUSSION 
(') ~ 

~ 
~ When I began this study, I viewed it as a reductio ad absurdum, a trial N r,,i 

~ of a model which was so simpleminded that it had no hope of any 
Cl! substantial success, but which might provide some lessons in the details 

0 0 0 ~ 
0 0 S2 "O of its failure. I remain convinced that the feature set employed is in-(') N 

"' 
( :iasw) "' adequate for the general case. Specifically, it seems unlikely that only two uo,ierna 0 ... 

(.) degrees of boundary strength are sufficient, and perhaps in general one cs:! 

.:: should regard prosodic features (stress, boundary, and rhythmic group-.9 
u ;.s 

S2 £ TABLE 1 

°' ~ ~ Duration Prediction for Cunning SahoZa:rs Deciphered the Tablets 
~ Cl,) 

~ '"' 
i3 

::I 
co O!I 

'b --= q, fi; Syllable position 
~ -;;;:::: ~ 

r-- -~ ~ 
-.;;::: 

/ .... ~ Parameters -~ ~ 
-0 ~ ~ ;; § of the model 2 3 4 5 6 7 8 9 10 

C. " 

-0 C: ~ 
~ 3: ~ .!= ~ e Base 179 179 179 179 179 179 179 179 179 179 a., -

lO ~ ~ lO -~ ~ l 18 18 18 18 -·- C. q, 
- <:::) 

~ ~ >-c:: 2 33 33 33 33 
'Sj" Cl.)~ 'Sj" 

-~ ~ t 3 34 34 
(') 

~ 
(') 

~~ 4 -7 -7 -7 -7 
C5 ~ 5 13 13 13 13 

N N -~ 
~ 6 48 48 

7 -15 
0 0 0 0 0 0 

0 0 ~ 0 0 ~ 8 -12 (') N (') N 

( :iasw) uo,ieJn □ ( :iasw) UO!l8Jn □ 9 10 

Total 223 192 257 240 179 208 180 189 257 240 

Observed 224 192 240 238 167 209 151 172 241 217 
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ing) as being hierarchically defined, along the lines suggested in Liberman 
(1975) and Liberman and Prince (1977). 

Although the present study shows little evidence of any interaction 
among the various prosodic features employed (e.g., different values of 
phrase boundary for stressed and unstressed syllables), it is hard to 
believe that such interactions do not exist. Furthermore, when different 
segments are mixed together, as in natural speech, interactions between 
segmental and prosodic effects may well arise which would complicate 
the model even for the treatment of a specific syllable such as [ma]. 
Finally, it is possible that reiterant speech itself produces a prosodically 
unnatural (though lawful) style of speech, whose spurious regularities are 
lacking in more normal linguistic activity. Even if this were true, how­
ever, the laws governing reiterant speech would retain some theoretical 
interest, since they must somehow be generated by more ordinary linguis­
tic knowledge and skills. 

There are various other ways of looking at the results of this modeling 
attempt, and many other questions about such modeling in general, which 
will not be discussed here. The main point of this chapter is simply that the 
prognosis is favorable-even the simplest kind of model, assuming that it 
embodies a sensible set of features, appears to have substantial predictive 
value. 
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Cross-Language Study 
of Tone Perception 

Jackson T. Candour / Richard Harshman 

INTRODUCTION 

10 

One of the aims of modern linguistic theory is to develop a set of 
linguistic-phonetic features that are universally applicable to all languages 
of the world. The precise number and nature of the features that should be 
included in this universal set are still very much in dispute. The present 
study represents an attempt to bring fresh experimental data to bear on 
the number and nature of phonetic features or dimensions related to tone 
(see Wang, 1967); to determine the dimensions underlying the perception 
of tone, and also the degree to which an jndividual's language background 
influences his tonal perception. 

Multidimensional scaling turns out to be a useful tool for measuring 
human perception in the tonal domain. Briefly., multidimensional scaling 
procedures spatially represent the underlying structure of a matrix of data 
values that generally correspond to subjective distances between stimulus 
objects. (stimulus space),· based on judgments of different individuals. 
Individual differences multidimensional scaling procedures (P ARAF AC: 
Harshman, 1970; INDSCAL: Carroll & Chang, i970) additionally provide 
information about the relative importance of each dimension to every 
individual (subject space). This information about the weights of the di-
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