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Abstract

In recent times, there has been an increased interest in theories of lan-
guage evolution that have an applicability to the study of dialect forma-
tion, linguistic change, creolization, the origin of language, and animal and
robot communication systems in general. One particular question that
has attracted some interest has the following general form: how might a
group of linguistic agents arrive at a shared communication system purely
through local patterns of interaction and without any global agency enforc-
ing uniformity? In this paper, we consider a natural model of language
evolution on a social network, prove several theoretical properties, and es-
tablish connections to related phenomena in biology, social sciences, and
physics.

1 Introduction

In recent times, there has been an increased interest in theories of language
evolution that have an applicability to the study of dialect formation, linguistic
change, creolization, the origin of language, and animal and robot communica-
tion systems in general (see [11, 14, 7] and references therein). One particular
question that has attracted some interest has the following general form: how
might a group of linguistic agents arrive at a shared communication system
purely through local patterns of interaction and without any global agency en-
forcing uniformity? The linguistic agents in question might be humans, animals,
or machines in a multi-agent society. For an example of interesting simulations
that suggest how a shared vocabulary might emerge in a population , see Liber-
man (2005) (other simulations are also provided by [18, 5, 1, 2, 19] among
others). In this paper, we consider a generalization of Liberman’s model, prove
several theoretical properties, and establish connections to related phenomena
in biology, social sciences, and physics.

Our model is as follows. For simplicity, we consider how a common word
for a particular concept might emerge through local interactions even though
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the agents had different initial beliefs about the word for this concept. For
example agents might use the phonological forms “dog”,“kukur”, “farama” etc.
to describe the concept of a canine animal. Thus we imagine a situation where
every time an event in the world occurs that requires the agents to use a word to
describe this event, they may start out by using different words based on their
initial belief about the word for this event or object. By observing the linguistic
behavior of their neighbors agents might update their beliefs. The question is -
will they eventually arrive at a common word and if so how fast.

1.1 Model

1. Let W be a set of words (phonological forms, codes, signals, etc.) that
may be used to denote a certain concept (meaning or message).

2. Let each agent hold a belief that is a probability measure on W. At time

t, we denote the belief of agent i to be b
(t)
i .

3. Agents are on a communication network which we model as a weighted
directed graph where vertices correspond to agents. We further assume
that the weight of each directed edge is positive and that there exists a
directed path from any node to any other. An agent (say i) can only
observe the linguistic actions of its out-neighbors, i. e.nodes to which a
directed edge points from i. We denote weight of the edge from i to j by
Aij .

4. The update protocol for the b
(t)
i as a function of time is as follows:

(a) At each time t, each agent i chooses a word w = w
(t)
i ∈ W (randomly

from to its current belief b
(t)
i ) and produces it. Let X

(t)
i , denote the

probability measure concentrated at w
(t)
i . Since w

(t)
i is a random

word X
(t)
i is correspondingly a random measure.

(b) At every point in time, each agent can observe the words that their
neighbors produce but they have no access to the private beliefs of
these same neighbors.

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij∑n
k=1 Aij

.

At every time step, every agent updates its belief by a weighted
combination of its current belief and the words it has just heard, i.e.,

b
(t+1)
i = (1− α)b

(t)
i + α

n∑

j=1

PijX
(t)
j ,

where α is a fixed real number in the interval (0, 1).
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At a time t, let the beliefs of the agents be represented by a vector

b(t) := (b
(t)
1 , . . . ,b(t)

n )T .

Similarly, let the point measures on words X
(t)
i be organized into a vector

X(t) := (X
(t)
1 , . . . , X(t)

n )T .

Then the reassignment of beliefs can be expressed succinctly in matrix form
where the entries in the vectors involved are measures rather than numbers as

b(t+1) = (1− α)b(t) + αPX(t). (1)

1.2 Remarks:

1. If beliefs were directly observable and agents updated based on a weighted
combination of their beliefs and that of their neighbors,

b(t+1) = (1− α)b(t) + αPb(t), (2)

the system has a simple linear dynamics, where all beliefs converge to a
weighted average of the initial beliefs. Thus eventually, everyone has the
same belief (see [3] for pioneering work and [6] for a recent elaboration in
an economic context.)

2. Our focus in this paper is on the situation where the beliefs are not ob-

servable but only the linguistic actions X
(t)
i are (and only to the immedi-

ate neighbors). Therefore, the corresponding dynamics follows a Markov
chain. The state space of this chain (defined by Equation 1) is the set of
all n-tuples of belief vectors. Since this is continuous, the standard mixing
results with finite state spaces do not apply directly.

1.3 Results:

Our main results are summarized below.

1. With probability 1 (w.p.1), as time tends to infinity, the belief of each
agent converges in total variation distance to one supported on a single
word, common to all agents.

2. w.p.1, there is a finite time T such that for all times t > T , all agents
produce the same fixed word.

3. The rate at which beliefs converge depends upon the mixing properties of
the Markov chain whose transition matrix is P .

4. The rate of convergence is independent of the size of W. One might think
that a population where every agent has one of two words for the concept
would arrive at a shared word faster than one in which every agent had a
different word for the concept. This intuition turns out to be incorrect.
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5. The proof of these results exposes a natural connection with coalescent
processes and has a parallel in population genetics.

6. Our analysis brings out two different interpretations of the behavior of a
linguistic agent. In the most direct interpretation, the agent’s linguistic
knowledge of the word is internally encoded in terms of a belief vector.
This belief vector is updated with experience. In a second interpreta-
tion an agent’s representation of its linguistic knowledge is in terms of a
memory stack in which it literally stores every single word it has heard
weighted by how long ago it heard it and the importance of the person
it heard it from. Such an interpretation is consistent with exemplar the-
ory An external observer looking at this agent’s linguistic actions will not
be able to distinguish between these two different internal representations
that the agent may have.

2 Convergence to a Shared Belief: Quantitative
results

Let P̃ be the transition matrix on the state space S̃ = S ∪ Ŝ, where for i, j ∈
S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃ (i → j) = P̃ (̂i → j) = αPij ,

P̃ (i → î) = P̃ (̂i → î) = 1− α.

Definition 1. Let Tmix(ε) denote the mixing time of P̃ , defined as the smallest
t for which, for each specific choice of v, w ∈ S̃,

∑

u∈S̃

|P̃ (t)(v → u)− P̃ (t)(w → u)| < ε.

Here P̃ (t)(b → c) denotes the probability that a Markov Chain governed by P̃
starting in b lands in c at the tth time step.

The following is the main result of this paper.

Theorem 1. 1. The probability that all agents produce the same word at
times T, T + 1, . . . tends to 1 as T tends to ∞. More precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−
T
τ

. (3)
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2. As time t → ∞ all produced words converge (almost surely) to a word
whose probability distribution is

n∑

i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose
transition matrix is P .

2.1 A Model of Memory

The evolution of the B(t) is a Markov chain. It can be seen that its only absorb-

ing states are of the form (b
(t)
1 , . . . ,b

(t)
n )T , where ∀i,b(t)

i = δw, and δw is the
point measure concentrated on some word w ∈ X. Formally, δw is the measure
on W, which assigns to a measurable set A the measure δw(A) according to the
following rule.

δw(A) = 1 If w ∈ A

= 0 otherwise.

Therefore, if the Markov Chain were finite, a simple argument would suffice.
In our case however, we have a Markov Chain whose state space is uncountably
infinite. Thus in principle, its dynamics could be hard to analyze. Our proof is
based on coalescent processes, which have also been extensively used to study
biological evolution [8, 10]. In analyzing the evolution of beliefs, we trace the
origin of words backwards in time and find that all surviving words, are copies
of a single word produced at some point in time sufficiently far in the past.
Observe that if the process had begun at time 0, the beliefs at time t+1 would
be

Observation 1.

B(t+1) =
t∑

i=0

α(1− α)iPX(t−i) + (1− α)t+1B(0). (4)

X(t) = (X
(t)
1 , . . . , X

(t)
n )T is a random vector whose entries are point mea-

sures, where X
(t)
i = δ(w

(t)
i ) and w

(t)
i is chosen from the measure b

(t)
i on X,

independent of the choice of other coordinates of the vector X(t). This observa-
tion, motivates a model of memory that we define in the following paragraph.

Let each agent’s memory be modeled as a stack. At the top level of the stack
of agent i are all the words heard at time t. Below this are all words heard at
time t− 1 and so on tracing backwards in time until the first words heard at an
initial time 1. At the lowest level, corresponding to time 0, is the initial belief

b
(0)
i which is a probability distribution on the set of words. We may imagine

this to be a form of vestigial memory.
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Let agent j be adjacent to agent i. We shall describe the process by which

agent j produces wordXj(t). Let Sj be the stack held by agent j, and S
(t)
j , . . . , S

(0)
j

be the levels in its stack from top to bottom. After j produces Xj(t), i places
Xj(t), and all other Xj′(t) produced by neighbors of i at time step t on the top
of its stack. In order to describe the mechanism by which Xj(t) is generated,
let us introduce a binomial random variable Y where

P[Y = i] = α(1− α)i.

If Y ≤ t − 1, Xj(t) is chosen to be the word produced by j′ at time t − 1 − Y
(which is stored in St−1−Y ) with probability Pjj′ . If Y ≥ t, Xj(t) is chosen from

the distribution in b
(0)
j . This process has been illustrated in Figure 2.1. Note

that in this model words are formal objects. While any two words present in the

stack positions S
(t)
j for t = 1, 2, . . . are considered distinct, there is a natural

“parent-child” structure existing on the set of words. Under this scheme, let

the probability distribution of X
(t)
i be denoted b̃

(t)
i . Denoting by B̃(t) the vector

(b̃
(t)
1 ,b

(t)
2 , . . . ,b

(t)
n ).

Observation 2. A direct computation shows that in the model just described

B̃(t+1) =
t∑

i=0

α(1− α)iPX(t−i) + (1− α)t+1B̃(0). (5)

This along with the fact that the randomness used in the generation of X
(t)
j

is independent of the randomness in the generation of all other words, tells us
that the model of memory just described results in a system with the same
dynamics as that introduced earlier. This particular model of memory may be
viewed as an implementation of the ideas implicit in exemplar based accounts
of linguistic behavior.

3 Proofs

By observations 1 and 2, in order to obtain an upper bound on P[X(t1)
i 6= X

(t2)
j ],

it is sufficient to trace the ancestry of both words backwards in time and show
that the probability that they do not have a common ancestor is small. Our
results are best stated in terms of the coalescence time of a set of random
walks. In Figure 2, we illustrate how the path tracing the origin of a word
backwards in time can be encoded as a Markov chain on a state space S ∪ Ŝ =
{1, . . . , n, 1̂, . . . , n̂}. We use the states 1̂, . . . , n̂ as additional “memory” states.
Since the random variable Y introduced in section 2.1 can be interpreted as the
length of a run of heads in a biased coin (whose probability of coming heads is
1− α), we can account Y using additional memory states.

We define a variant of the meeting time between two Markov Chains as
follows. Let u, v ∈ S ∪ Ŝ.
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1 2 3 4

X
(t+2)
2X

(t+2)
1

X
(t+1)
1

X
(t+2)
3

X
(t+2)
4

X
(t+1)
3 X

(t+1)
4X

(t+1)
2

t + 1

t + 2

t
a, b, c α, β, γ d, e, f δ, ε, ρ

a, b, c α, β, γ d, e, f δ, ε, ρ

a, b, c α, β, γ d, e, f δ, ε, ρ

α

α

b, f ρ, α f

b, f ρ, α f

f α, α f, f α

Figure 1: A coalescent process obtained by tracing the origin of words backwards
in time, and the associated memory stacks of agents 1 to 4 for time steps t to
t+ 2. Each agent produces α at time t+ 2 due to coalescence to a single word
α produced by agent 2 at time t.

Definition 2. For t ≥ 0, let Yt and Zt be two independent random walks
on S ∪ Ŝ each of which has P̃ as its transition matrix and have initial states
Y0 = u, Z0 = v. For ∆ > 0, let Muv(∆) be the smallest time t > 0 for which
Yt+∆ = Zt ∈ S.

Theorem 1. 1. The probability that all agents produce the same word at
times T, T + 1, . . . tends to 1 as T tends to ∞. More precisely, if

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−
T
τ

. (6)

2. As time t → ∞, all produced words converge (almost surely) to a random
word chosen from the probability distribution

n∑

i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose
transition matrix is P .
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1 2 3 4

1̂ 2̂ 3̂ 4̂

1 2 3 4

1̂

1

1̂

1

2̂

2

2

2̂ 3̂

3

4̂

4

3

4̂

4

3̂

X
(t+3)
2

X
(t+2)
3

t

t + 1

t + 2

t + 3

X
(t)
2

Figure 2: The ancestry of X
(t+3)
2 has been traced backwards in time to X

(t)
2 .

On the right,is an encoding of this path in terms of the transitions in a Markov
Chain with “auxiliary states” 1̂, . . . , n̂. 3̂ is occupied at time step t+ 1 because
the agent 3 produced a word at a time t+ 2 from past memory.

Proof. To prove the first part, we observe that

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑

j=1

(
P[XjT

1 6= X
(j+1)T
1 ] +

T−1∑

k=0

n∑
u=1

P[XjT+k
u 6= XjT

1 ]

)

by the union bound. The following application of Lemmas 1 and 2 completes
the proof.

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑

j=1

(
P[XjT

1 6= X
(j+1)T
1 ] +

T−1∑

k=0

n∑
u=1

P[XjT+k
u 6= XjT

1 ]

)

≤
∞∑

j=1

(
P[M11(T ) ≥ jT ] +

T−1∑

k=0

n∑
u=1

P[Mu1(k) ≥ jT ]

)

≤ MnTe−
T
τ

1− e−
T
τ

,

where M and τ are the constants that appear in Lemma 2.
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To prove the second part, we use the linearity of expectation to show that
the expected value of the beliefs follows a simple rule. Namely

Eb(t+1) = (1− α)Eb(t) + αPEX(t)

= ((1− α)I + αP )Eb(t)

= . . .

= ((1− α)I + αP )t+1Eb(0).

By well known results on Markov chains,

lim
t→∞

((1− α)I + αP )t = (1, . . . , 1)T (π1, . . . , πn),

where πi is the stationary probability of the state i under the chain P . Therefore,
for each j,

lim
t→∞

Eb(t)
j =

n∑

i=1

πib
(0)
i ,

By the first part of this theorem, as t → ∞, b(t) converges almost surely to
a measure that is concentrated on a single common word w. Given a signed
measure µ, let

|µ| = sup
‖f‖∞≤1

∫
fdµ.

Then,

∣∣E[δw]− E[XT
i ]
∣∣ ≤ P

[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤ MnTe−
T
τ

1− e−
T
τ

,

It follows that this common word w must have the distribution
∑n

i=1 πib
(0)
i .

Lemma 1. The probability that the word produced by agent u at time step t1
is different from that produced by agent v at time step t2 greater than t1 can be
bounded from above as follows.

P[X(t1)
u 6= X(t2)

v ] ≤ P[Muv(t2 − t1) ≥ t1].

Proof. In the model of memory introduced in section 2.1 we described a parent-
child relationship between words, where a child word is identical to a parent
word. The evolution of the Markov chain defined in this section corresponds

to the genealogy of a word. The event that the words X
(t1)
u and X

(t2)
v have a

common ancestor produced at some time ≥ 0 is the event that Muv(t2−t1) ≤ t1.
The lemma follows from the fact that two words that have a common ancestor
are the same.
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Lemma 2. The random variable Muv(∆) has an exponential tail bound uniform
over u, v and ∆. More precisely, there exist constants M, τ > 0 independent of
u, v and ∆ such that

P[Muv(∆) ≥ T ] < Me−
T
τ .

(In fact, this is satisfied for τ = 4n
α2Tmix(

α
4 ) and M = e.)

Proof. The stationary measure µ̃ satisfies for each i, the identity αµ̃(̂i) = (1 −
α)µ̃(i).

Let τ1 = Tmix(
α
4 ) ln(

4n
α2 ). Let us denote by qu(i) the probability P[Zτ =

i
∣∣Z0 = u]. Then,

sup
u,v
P[¬(Yτ+∆ = Zτ ∈ S)

∣∣Y∆ = u,Z0 = v]

= 1− inf
u,v

∑

i∈S

qu(i)qv(i)

≤ 1− inf
u,v

∑

i∈S

min(qu(i), qv(i))
2

≤ 1− inf
u,v

(
∑

i∈S min(qu(i), qv(i)))
2

n

≤ 1− α2

4n
.

Now, using the Markov property and conditioning repeatedly, we see that

P[Muv(∆) ≥ T ] ≤ P[¬(Y∆ = Z0 ∈ S)]×
b T
τ1

c∏

i=1

sup
u,v
P[¬(Y∆+iτ1 = Ziτ1 ∈ S)

∣∣

(Y∆+(i−1)τ1 , Z(i−1)τ1) = (u, v)]

≤ P[¬(Y∆ = Z0 ∈ S)]

b T
τ1

c∏

i=1

(1− α2

4n
)

≤
(
1− α2

4n

) T
τ1

−1

≤ e1−
T
τ .

where

τ =
4n

α2
Tmix(

α

4
) ln

(
4n

α2

)
,

which proves the Lemma.
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3.1 Concluding Remarks

The general theme of predicting the macroscopic behavior of a system from the
local behavior of its microscopic components arises in many different areas of
physics, biology, and the social sciences. It is also a fundamental issue in the
analysis of distributed systems in computer science.

In Spin systems, which originated as models for Ferromagnets, atoms are
pictured to be in a 2-Dimensional square array, each possessing a spin “up” or
“down.” The effect that an atom has on the spin of a neighbor is a function
of temperature. Typically, coherence is observed at low temperatures, while
at high temperatures atoms tend not to align, which is in agreement with the
demagnetization that ferromagnets undergo at high temperatures. The model
we consider, involving the convergence in beliefs has many high level similarities
though we do not address the question of what might be the analog of tempera-
ture in our model, how to take the thermodynamic limit, and if and how phase
transitions may arise.

Another closely related model is the voter model studied in probability the-
ory with its origins in the social sciences. Each agent lives on the vertex of
the graph, has a belief which is a discrete variable, and is observable to its
neighbors. Each agent changes its belief with a certain probability based on
the observed beliefs of its neighbors. Another kind of belief propagation model
is that described by Jackson (2007). In both cases, the beliefs are observable
in contrast to our setting. Our communication graphs model the pattern of
local interaction among agents and may arise through modes of social network
formation studied in the field of social network theory [12].

Linear update rules are often used in distributed systems, to achieve coher-
ence among different agents or to share knowledge gathered individually. In
a model that has been intensively studied, a number of sensors form a net-
work, each of which measures a quantity such as temperature [3]. Neighbors
communicate during each time step and make linear updates in a synchronous
or asynchronous manner. The rate at which consensus is attained is studied.
There is also a related body of work on Coordination and Distributed Control.
A model of flocking has been considered in [4], where a group of birds, have
a certain initial velocity, and the evolution of their velocities is governed by a
differential equation wherein each bird modifies its velocity to bring it closer to
that of its neighbors. The update rule involves a graph Laplacian. Some results
are derived concerning the initial conditions that result in flocking behavior.

There are two connections to evolutionary theory that are worth mention-
ing. First, our proof of convergence exposes a natural coalescent process over
words. Coalescent processes are, of course, widely used in modeling and making
inferences about genetic evolution [8, 10]. Second, researchers have considered
game-theoretic models of evolution [9] and more recent research in this tradition
has addressed evolutionary games on graphs [16, 13, 17]. The question of how
agents may learn an appropriate strategy for a coordination game on a graph
has many high level similarities to the problem studied in this paper.

Finally, there have been a large number of models on achieving coherence
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in a linguistic population. Many of these rely on simulations. Among mathe-
matical studies, two strands are worth noting. The model of language evolution
proposed in has many similarities with languages of agents evolving on a graph.
But it is worth noting that in that model, if at each time step, the number of lin-
guistic examples (observations) collected by each agent is bounded from above
by a constant (independent of time), the community fails to achieve a consen-
sus language. A second strand is the collection of results obtained in [15, 11].
While there are many synergies with that body of work, there is nothing that
is directly comparable.
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