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newsletter culminated in the creation of our very successful, very well-received newsletter, 
FOCUS. Its editor, Marcia P. Sward, calls Ed the "Father of FOCUS". 

Let me conclude by emphasizing other service to the Association. Ed was elected chairman of 
the Texas Section, but he left for Michigan before he took office. He was a visiting lecturer for the 
MAA, and served a five-year term as editor of the Mathematical Notes Section of the MONTHLY. 
As chairman of the Committee on Publications since 1971, he guided the unprecedented growth of 
our journals and our series of books and monographs with skill, determination, and enthusiasm. 

In all his activities, Ed Beckenbach enlisted the cooperation of his colleagues by his skill at 
negotiation, his unfailing courtesy and consideration toward others, and his common sense and 
good humor. But Ed's cooperative and accommodating spirit at the committee table completely 
disappeared in another of his roles. On the tennis court Ed was a hard contender, a tough 
adversary who showed 'em no mercy. Captain of the tennis team at Rice University back in the 
twenties, and later the coach of the team, he spanned six decades with his favorite sport. Even 
recently Ed and his wife Alice competed in national tournaments of "superseniors"; in more 
peaceful moments they indulged their lifelong hobby, tending their hillside acre of plants ranging 
from apricots to orchids. Incidentally, Alice surely holds a record for faithful attendance at 
meetings of mathematicians, having started at the age of eleven as daughter of a one-time 
president of the Association. 

Ed Beckenbach clearly served the mathematical community very well. We are all indebted to 
him for his preeminent leadership. Ed Beckenbach is indeed a most worthy recipient of the Award 
for Distinguished Service to Mathematics. 

* * * 

Edwin F. Beckenbach died on September 5, 1982. 

SINGULAR VALUE ANALYSIS OF CRYPTOGRAMS 
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1. Singular Value Analysis and Cryptanalysis. The singular value decomposition is a matrix 
factorization which can produce approximations to large arrays. Cryptanalysis is the task of 
breaking coded messages. In this paper, we present an unusual merger of the two in which the 
singular value decomposition may aid the cryptanalyst in discovering vowels and consonants in 
messages coded in certain variations of simple substitution ciphers. 

Texts in many languages, including English, have the property that vowels are frequently 
followed by consonants, and consonants are frequently followed by vowels. We say a text is a 
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"vowel-follows-consonant" text, or more briefly, a "vfc" text if the proportion of vowels 
following vowels is less than the proportion of vowels following consonants. That is, if 

number of vowel-vowel pairs < number of consonant-vowel.pairs 
number of vowels number of consonants 

Some languages produce better vfc texts than others and some deviations by individual letters 
can be expected. In English text, the letter h is often preceded by other consonants to form a 
single sound, as in ch, gh, ph, sh, and, especially th. The letters 1, n, m, and r are often followed by 
consonants. Nevertheless, English is a predominantly vfc language. In Hawaiian, every consonant 
is followed by a vowel, so there are no consonant-consonant pairs. In the romaji transliteration of 
Japanese, the only consonant-consonant pairs are ch, sh, ts, and n, followed by a consonant and 
several double consonants. Russian has many sounds which, in transliteration, are of the 
consonant-consonant or vowel-vowel form, such as sh, ch, ts, ya, and ye, but in the Cyrillic 
alphabet, these are represented as single letters. Thus, Russian is also a predominantly vfc 
language. 

2. The Cryptanalyst's Problem. A simple substitution cryptogram is a coded message in which 
the individual letters have been replaced by a permutation of themselves. When faced with such a 
message, a cryptanalyst might first count the occurrences of individual letters in the message and 
compare the frequencies with the known frequencies in typical uncoded text. However, a fairly 
long message is required before this technique has much chance of success. 

Another aid in breaking the code is a partitioning of the alphabet of the cryptogram into two 
subsets, representing the vowels and the consonants. In order that such a partition be plausible, it 
ought to satisfy the vfc rule (1). This is the main task which we wish to consider here-and is what 
we call the cryptanalyst's problem. A trial and error solution, which tries all possible partitions 
until one satisfying the vfc rule is found, is clearly prohibitive. 

Let n be the number of letters in the alphabet. For any text, the digram frequency matrix is the 
n-by-n array A with aij = the number of occurrences of the ith letter followed by the jth letter. 
Blanks and punctuation, if present, are ignored and the first letter of the text is assumed to follow 
the last letter. In general, the matrix is not symmetric, but for each i 

Eaij = Eaj1 =f 
I i 

where fi = the number of occurrences of the i th letter. 
For any proposed partitioning of the alphabet into vowels and consonants, two column 

vectors, v and c, can be defined by 

vi = 1 if the ith letter is a vowel, 0 otherwise, 

Ci = 1 if the i th letter is a consonant, 0 otherwise. 

Note that v + c is a vector with all l's and that the inner product vTc is zero. Also note that the 
value of the quadratic form vTAv is the number of vowel-vowel pairs in the text. 

Using A, v and c, the vfc rule (1) can be stated 

vTAv cTAv 

vTA(v + c) cTA(v + c) 

Cross-multiplying and cancelling the common term, we obtain 

(2) (vTAv)(cTAc) - (vTAc)(cTAv) < 0. 

The cryptanalyst's problem, then, is: Given A, find a partitioning v and c so that (2) holds. 

3. The Singular Value Decomposition. The singular value decomposition, or SVD, is a matrix 
factorization which numerical analysts use in a wide variety of ways. Although its primary uses are 
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in the analysis of systems of simultaneous linear equations and in the computation of pseudoin- 
verses, we will use it here to obtain " simple" approximations to the digram frequency matrix. For 
this purpose, we express the SVD as a sum of rank one matrices of the form 

(3) A = a1xXyT + a2x2yT + *- + anXnYnT 

where 

a1 a22 * > an > 0 

xiTx= uij (the Kronecker delta) 

Yii ij 

The coefficients aj are known as the singular values and xj, and yj are the left and right singular 
vectors, respectively. They can also be characterized in terms of the solutions to the symmetric 
eigenvalue problem: 

tT o} y} 

It is not hard to see that the rank of a matrix is the number of nonzero singular values. (In fact, 
this is a particularly useful way to define rank.) 

There is a fast, reliable algorithm for computing the SVD [3], [6]. For a 26-by-26 matrix, the 
computation of the singular values and corresponding left and right vectors takes only a few 
seconds on a medium speed moderm computer. 

The normalization of the vectors xj and yj insures that all of the rank one matrices xjyT have 
the same norm (that is, the sum of the squares of the elements). Consequently, the numerical 
importance of each term in the sum (3) can be measured by the size of the coefficient aJ.. If the a 
decrease fairly rapidly as j increases, then an accurate approximation to A can be obtained by 
truncating the series after only a few terms. Truncating the series after k nonzero terms provides a 
rank k approximation to A. Such approximations are related to those obtained by factor analysis 
and have a wide variety of applications. One unusual application is to digital image processing [1]. 

4. Rank One Approximation. A rough approximation to a digram frequency matrix can be 
obtained by taking only the first term in its SVD: 

A ~ A1 = a1xXlyT. 

Let e be the vector of all l's and let f be the vector with f = the number of occurrences of the i th 
letter in the text. Then Ae = ATe = f and so 

a1 (yTe)xl a-(-xaTe)x e fy . 

Consequently, if we were to assume that the digram frequency matrix were only rank one, we 
would conclude that it was symmetric and that each row and column was proportional to the 
frequency vector f. 

Of course, in practice, A is not rank one. Nevertheless, the first left and right singular vectors 
tend to be approximately equal and reflect the frequencies of the letters in the text. 

5. Rank Two Approximation. The rank two approximation obtained from the first two terms 
of the SVD is the simplest approximation which takes into account the correlation between pairs 
of letters in the text. The second left and right singular vectors contain the key to the solution of 
the ciyptanalyst's problem. 

Assume that A is approximated by a matrix of rank two, so that 

(4) A A2 = a xTyf + a2x2yT. 

We propose to use the signs of the components of x2 and Y2 to partition the alphabet as follows: 
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{ I ifx2 > O andy,2 < O 
i 0 

0 
otherwise, 

()c 1 f Xi2 < 0 andyi2 > 0 
( 0 otherwise, 

= if sign (Xi2) = sign (Yi2) 
O otherwise. 

The third category-the "neuter" letters-are the ones that cannot be classified as either vowels 
or consonants. It turns out in practice that few letters fall into this category. In English text, for 
example, the letter h is usually neuter. It might be possible to consider a finer partition involving 
"left vowel, right consonant" and so on, but we have not pursued this idea. 

Using these definitions, we obtain a solution to the cryptanalyst's problem as follows. 

THEOREM. Let A = A2 be a nonnegative rank 2 matrix with the SVD expansion in (4). Let v and 
c be defined by (5). Then the vfc rule, 

(6) D = (vTAv)(cTAc) - (vTAc)(cTAv) < 0 

is satisfied. 

Proof. Since A is a nonnegative matrix, it follows from the Perron-Frobenius theorem [4] that 
xl and Yi have nonnegative components. Placing (4) in (2) and expanding produces eight terms. 
The two terms involving only subscript 1 cancel, so do the two terms involving only subscript 2: 

D =1F2 (V"ZIY1 v cTz2y2Cc + vTz2y2v cITz yIc 

T T T T T 
-vZIy1C CTZ2Y22V - VTZ2Y2C CTZIYl V) 

Of all the different inner products appearing in this expression, only two-namely, y2Tv and 
CTZ2-are negative. Consequently, all four terms in the parentheses are negative and D is negative. 

6. Effects of Encipherment. When a message M is encoded by a simple substitution cipher c, 
(where c is a permutation of the integers 1 to n) each occurrence of the ith letter u, is replaced by 
the c(i)th letter, uc(z). The resulting cryptogram is called MC. If A is the digram frequency matrix 
of M, and C is the permutation matrix C = (8c(i) j) which has in its ith row, the c(i)th row of the 
identity matrix, then it is not difficult to show that the digram frequency matrix of MC is CA CT. 
This matrix has in row c(i), column c(j), the frequency of the digram uiu1 in M, which it 
represents. It follows that the singular values of CA CT are the same as those of A, and the jth left 
and right singular vectors are, respectively, Cxj and Cyj. These have the same coefficients as xj 
and y1, but they are permuted by C; the coefficients appearing in row i in xJ ad yJ appear in row 
c(i) in Cxj and Cyj. If the scheme described above, applied to A, classifies the letter ui as a vowel 
in M, then applied to CA CT, it will classify uc(,), the encoding of ui, as a vowel in Mc. 

Simple substitution ciphers are, of course, very simple ciphers, and no self-respecting cryptana- 
lyst regards them as a challenge. A more sophisticated cipher is the k-alphabetic cipher (k is a 
positive integer). In this cipher, k permutations, cl, ca.. ., Ck are used in cyclic fashion to encode 
the letters in M to produce the cryptogram M,. A letter is said to be in position p, in M 
(1 < p < k), if it is the mth letter of M and m is congruent p modulo k. If the letter ui occurs in 
positionp, it is encoded as uc(i). Thus, the encoding of a letter depends, not only on what letter it 
is, but also on its position in M. 

The digram frequency matrix of a cryptogram encoded by a k-alphabet cipher is of little use in 
decoding it, since the various occurrences of a digram in MC do not represent the same digram in 
M, if they do not occur in the same position. Cryptanalysts have some clever ways to deduce the 
probable value of the cycle length k. See, for example, Gaines [2] or Sinkov [5]. Armed with this 
information, a cryptanalyst can calculate k digram frequency matrices, Ap = (aijp) where ai jp is 
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the frequency with which the digram uiuj occurs in positions p, p + 1 modulo k. All of these 
occurrences are encoded into the same digram u c (i)uc + (i) in the cryptogram Mc. By an argument 
similar to that given above for the simple substitution, if Ap is the digram frequency matrix for 
digrams occurring in position p, p + 1 in M, then CpApCp/+I is the corresponding digram 
frequency matrix for the cryptogram Mc. It has the same coefficients as Ap4, but its rows are 
permuted by Cp, and its columns by Cp+ +. Its singular values are the same as those of Ap, and its 
j th left and right singular vectors are, respectively, Cp xpj and Cp + I Ypj, where xpj and ypj are those 
of Ap. If the classification scheme described above, applied to xpj and y(p- 1)j classifies u, as a 
vowel, then it will also, applied to Cpxpj and Cpy(p+ 1)j, classify its encoding uc (j) as a vowel. 

If this is done for each p, then the cryptanalyst has, for each p, a classification of the letters in 
position p of the cryptogram, into vowels and consonants. The classification is, of course, only as 
reliable as it would have been if it had been applied to the original message M, or, more 
particularly, to those subsequences of M consisting of the digrams occurring in a particular 
position p, p + 1. If these are representative samples of the digrams occurring in the language of 
M, then the classification is as reliable as it is when applied to equally representative plaintexts, as 
we have done in sections 7 and 8. 

1 81.7256 
2 53.5189 
3 45.1604 
4 31.1073 
5 19.9258 
6 18.8196 
7 16.8777 
8 12.1174 
9 10.1647 

1 0 9.4667 
1 1 7.6957 
12 6.2491 
1 3 4.7882 
14 2.7120 
15 2.1048 
16 1.7556 
17 1.6395 
18 0.9360 
19 0.8129 
20 0.4996 
21 0.3232 
22 0.2069 
23 0.0148 
24 0.0000 
25 0.0 
26 0.0 

FIG. 2. The singular values. 

7. Experimental Results. Fig. 1 is the digram frequency matrix for Lincoln's Gettysburg 
Address, a text of 1,148 characters. Notice, for example, that "th," with 47 occurrences, is the 
most frequent pair, that "q" occurs only once, and that "j," "x" and "z" do not occur at all. 

Fig. 2 gives the singular values of the matrix in Fig. 1. Since three letters are missing, the matrix 
has rank 23 at most, and 3 of the singular values should be zero. The subroutine finds two exact 
zero values and one value, the size of roundoff error on the computer. (Exact zeros are printed as 
0.0, while numbers less than 10' are printed as 0.00000.) 
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It certainly cannot be claimed that the singular values decrease rapidly. In fact, the rank two 
approximation only vaguely resembles the original matrix. Nevertheless, useful information can be 
obtained from the first two pairs of singular vectors. 

Fig. 3 shows the first singular vectors xl and Yi, together with the frequency vector f. It can be 
seen that the components of the two singular vectors are roughly equal, and are roughly 
proportional to the components of the frequency vector. Thus, even though the matrix is not 
particularly well approximated by the first term of its SVD, the singular vectors still retain the 
properties predicted by the rank one theory. 

A 0.3275 0.3221 102. 
B 0.0470 0.0441 14. 
C 0.1200 0.1135 31. 
D 0.2011 0.2259 58. 
E 0.4394 0.4517 165. 
F 0.0875 0.1065 27. 
G 0.0966 0.0799 28. 
H 0.3481 0.3378 80. 
I 0.1830 0.2339 68. 
J 0.0000 0.0000 0. 
K 0.0099 0.0097 3. 
L 0.1203 0.1218 42. 
M 0.0607 0.0468 13. 
N 0.2165 0.2435 77. 
0 0.2387 0.2563 93. 
P 0.0522 0.0564 15. 
Q 0.0007 0.0054 1. 
R 0.2954 0.2493 79. 
S 0.1683 0.1391 44. 
T 0.4453 0.4367 126. 
U 0.0532 0.0597 21. 
V 0.1167 0.0817 24. 
W 0.1210 0.1044 28. 
X 0.0 0.0 0. 
Y 0.0339 0.0344 10. 
Z 0.0 0.0 0. 

FIG. 3. The first right and left singular vectors and the letter 
frequency vector. 

A -0.5097 0.1574 
B 0.0412 -0.0386 
C 0.0719 -0.0788 
D 0.1436 -0.2163 
E -0.3306 0.5305 
F -0.0006 -0.0198 
G 0.0521 -0.0623 
H 0.3877 0.3293 
I -0.2070 0.1791 
J 0.0000 -0.0000 
K 0.0033 -0.0049 
L 0.0298 -0.0853 
M 0.0634 -0.0613 
N -0.0649 -0.3983 
0 -0.3891 0.1070 
P 0.0385 -0.0535 
Q -0.0010 -0.0062 
R 0.1692 -0.3402 
S 0.0801 -0.1462 
T 0.3785 -0.3878 
U -0.0860 -0.0516 
V 0.1884 -0.1405 
W 0.1559 -0.0112 
X 0.0 0.0 
Y -0.0045 -0.0215 
Z 0.0 0.0 

FIG. 4. The second right and left singular 
vectors. The sign patterns identify vowels 

and consonants. 

Fig. 4 shows the second singular vectors x2 and Y2. The alternating sign patterns predicted by 
the rank two theory are clearly evident. Figs. 5 and 6 give a graphical summary of the quantitative 
information in Fig. 4 by plotting each letter at a point in the two-dimensional plane determined 
by its components in x2 and Y2. Thus, "a" is plotted at coordinates (-0.5097,0.1574), "b" at 
coordinates (0.0412, -0.0386), and so on. The more frequent letters are in Fig. 5 and the less 
frequent letters in Fig. 6. The box in both figures has corners at (? 0.1, ? 0.1). 

Since they fall in the same quadrant (the second), the letters "a," "e," "i" and "o" should all 
be classified as either vowels or consonants, and we have, of course, chosen to call them vowels. 

The letters "h," " n," " u" and " y" must be called neuter because the corresponding signs in the 
two vectors agree. The letter "q" occurred only once. The classification of q as neuter is 
nevertheless interesting. Its one occurrence is in the word "equal." One might expect it to be 
classified as a consonant, since it occurs between two vowels. Note, however, that the algorithm 
does not recognize u as a vowel. It is classified as neuter. This is, no doubt, attributable to the very 
high frequency of the digram ou, which accounts for 7 of the 21 occurrences of u. The letter "h" 
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E 

H 

A 

0 ~~~ V 

D 

R 
N T 

FIG. 5. The more frequent letters, plotted with coordinates from Fig. 4. 

clearly shows a tendency to be followed by a vowel, and to be preceded by a consonant. The letter 
"n" shows a weak tendency to be followed by a consonant and a strong tendency to be preceded 
by a vowel. The other three neuter letters occur infrequently. The letter "ij,I "x," and "z" are seen 
not to occur at all. The remaining 14 letters are classified as consonants. 

If a simple substitution cryptogram were made from text such as the Gettysburg Address, the 
digram matrix A would be replaced by PAPT for some unknown permutation matrix P. As shown 
in Section 6, the singular vectors of the transformed matrix would classify the encoding of each 
letter in the same way as x2 and Y2 classified the letters of the plaintext. 

8. Other Languages. The same experiment was performed on texts of approximately one 
thousand characters each, written in five other languages selected for their diversity. The 
classifications of letters resulting from these tests are tabulated below. 

Language Vowels Consonants Neuter Absent 

Hawaiian AEIOU HKLMNPW BCDFGJQ 
RSTVXYZ 

Japanese AEIOU BDGHKMNRSTWYZ CFJLPQVX 
German AEFOPU BHIKLNRV CDGJMSTWZ QXY 
Spanish ABO CDFGLMNQRSXYZ BHIJPTUV KW 
Finnish AEIOUY DHJKLMNPRSTV B CFGQWXZ 
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QK 

G M 

L C 

FIG. 6. The less frequent letters. The scale is 5 times that of Fig. 5. 

None of the discrepancies is very surprising. Several of them are associated with letters which 
occurred so infrequently that no significance can be attached to their classification. In the Finnish 
example, B occurred only once, at the beginning of a word of foreign origin. It followed a final N 
in the preceding word and preceded an E. In the German text, P occurred only once, and that 
occurrence was in the very Germanic trigram SPR. Occurring only between two consonants, it is 
not surprising that the analysis classified it as a vowel. The most common neighbor of F, on both 
sides, in the selected sample, is R. The classification of I is confused because of the very high 
frequency of the diagrams IE and El. More generally, the German language does not share the 
aversion of the other languages to consecutive consonants, and consequently many German letters 
fall into the neuter category. The classification of Y as a vowel in the Finnish sample is not 
surprising; Y has a value in Finnish that is hardly distinguishable to a non-Finnish ear, from that 
of U. The neuter classification of I and U in the Spanish example is clearly attributable to the high 
frequency of vowel-vowel digrams in which U or I is the first letter, having a value equivalent to 
W or Y in English. The perfect performance of the algorithm in Japanese and Hawaiian is clearly 
the result of their rigorously observed exclusion of consonant-consonant digrams. Most of the 
Japanese Hiragana characters are transliterated as a consonant-vowel digram. 

9. Conclusions. The second singular vectors in the singular value decomposition of the digram 
frequency matrix provide the cryptanalyst with a helpful and surprisingly reliable way to classify 
the letters in a cryptogram as vowels or consonants, if the encoding algorithm is simple 
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substitution or k-alphabetic substitution, with k known, and if the text if vfc text. Texts written in 
many natural languages, with certain exceptions, tend to be vfc texts. Near-exceptions are German 
(and, presumably, other germanic languages) in which the vfc character is somewhat diminished 
by the frequency of consonant-consonant digrams, and Spanish (and, presumably, other romance 
languages) in which certain vowel-vowel pairs are frequent. Despite these deviations from the vfc 
rule, the second singular vectors classify correctly most of the letters which occur with a frequency 
high enough to be statistically significant. 

A computer program which uses the SVD as the starting point in an automated, heuristic 
approach to solving cryptograms is described by Schatz [7]. 
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WHAT IS THE GEOMETRY OF A SURFACE? 

ROGER FENN 
School of Mathematics and Physical Sciences, University of Sussex, Falmer, Brighton BNJ 9QH, England 

1. In this article we shall assume the definition of a geometry proposed by Klein in his 
Erlangen program, that is, a geometry is a group of transformations of space together with the 
propositions left invariant by this group. The space in question will be the two-dimensional plane. 
By a surface we shall mean a closed compact orientable surface of genus y. That is a sphere with y 
handles attached. The fact that two such surfaces are homeomorphic if and only if their genera are 
equal was probably known to Riemann. A modern proof can be found in Massey's book [5, 
Chapter 1]. 

The exact result which will be proved is the following: 

THEOREM 1. Let y > 1. Then there is a group of hyperbolic translations of the hyperbolic plane 
such that the space of orbits under these translations is homeomorphic to a surface of genus -y. 

Moreover, there is a compact polygon in the plane whose translates under the group are distinct for 
distinct group elements and which form a network of nonoverlapping polygons covering the whole 
hyperbolic plane. 

Our aim is to prove the above by means as elementary as possible, in particular without using 
deep results from the theory of functions. 

In order to illustrate the general result, we consider firstly the case where -y = 1. Here the 

Roger Fenn is a Lecturer in Mathematics at the University of Sussex, England. He received his Ph.D. in 1968 
under the direction of John Reeve and is presently writing a book on Geometric Topology. He believes people 
should be at the same time renaissance polymaths and twentieth century specialists insofar as this is possible. He is 
married, with three children, and enjoys playing chess, singing madrigals, and walking. 
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