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An interesting subclass of bandpass signals \h \ is described wherein 
the zero crossings of h determine h within a multiplicative constant. 
The members may have complex zeros, but it is necessary that h should 
have no zeros in common with its Hilbert transform fi other than real 
simple zeros. It is then sufficient that the band be less than an octave 
in width. The subclass is shown to include full-carrier upper-sideband 
signals (of less than an octave bandwidth). Also it is shown that full-
carrier lower-sideband signals have only real simple zeros (for any ratio 
of upper and lower frequencies) and, hence, are readily identified by 
their zero crossings. However, under the most general conditions for 
uniqueness, the problem of actually recovering h from its sign changes 
appears to be very difficult and impractical. 

I. INTRODUCTION 

Voelcker and Requicha1 raised the question, among others, as to when 
a bandpass signal h(t) might be recovered (within a multiplicative 
constant) from sgn \h(t)\, that is, from its zero crossings. There are really 
two questions here that should be treated separately: the question of 
uniqueness and the question of recoverability. Recoverability implies 
that there is an effective (stable) way of recovering the signal from the 
data. Uniqueness does not always imply recoverability. For example, 
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a band-limited signal is uniquely determined from its samples (at slightly 
greater than the Nyquist rate) just on a half line, say t < 0, but there is 
no stable way of recovering the signal from the half-line samples. How-
ever, to demonstrate recoverability we must first establish uniqueness. 
Here we examine the question of uniqueness. 

There are countless ad hoc ways of choosing a subset Ζ of bandpass 
signals such that 

8 g n | M t ) l = sgn | f t2(f>l, h , e Z , h 2 ^ Z (1) 

implies 

hiU) = Ah-At). (2) 

e.g., by choosing the first member in an arbitrary way and then choosing 
successive members that have distinct signum functions. However, the 
subset Ζ could be considered interesting only if it reveals basic con-
straints on the sign changes of members of the whole class. Our objective 
is to illuminate the structure of bandpass functions (signals) having the 
same signum function. 

In connection with (1), we are going to assume that the function sgn 
\h(t)\ has no removable discontinuities,* and, hence, does not mark the 
location of zeros of even multiplicity. Also, in the context of the problem 
here we say two functions are distinct only if one is not a constant mul-
tiple of the other. 

We first focus on the problem of constructing distinct bandpass 
functions having the same signum function. This leads to the concept 
of the "free" zeros of a bandpass function h. 

The free zeros of h are those zeros that may be removed or moved 
around (by replacing the removed zero with another) without destroying 
the bandpass property of h. Removing (or moving) any zero of h does 
not destroy the overall low-pass property of h but may destroy the 
bandpass property. The simple examples sin t and i - 1 sin ί illustrate 
this fact. 

We show that the free zeros of h are simply the common zeros of h and 
its Hilbert transform h. These are further identified as common zeros 
of certain low-pass functions in the representation of h. In case of real-
valued h(t), the free zeros of h are conveniently identified in the repre-
sentation 

hit) = Re \f(t)e'»<\ 

as the real zeros of / and those complex zeros of / that occur in conjugate 

* According to the usual convention, sgn 0 = 0, the function s(t ) = sgn |sin- /1 would have 
removable discontinuities at the zeros of sin t. Here we assume that the function of ί , sgn 
\h U )|, takes the value 0 only at points where hit) changes sign. 

4 8 8 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1 9 7 7 



pairs. Here / ( f ) is an arbitrary complex-valued band-limited function 
which need not have complex zeros occurring in conjugate pairs. 

It follows readily that if a real-valued bandpass h{t) has free zeros 
other than real simple (free) zeros, then there is a distinct function in 
the same class having the same signum function as h (t ). So, in the ab-
sence of some meaningless ad hoc rule, we must restrict our attention 
to functions that have no free zeros other than real simple zeros if we 
require sgn \h(t)\ to determine M i ) within a constant multiplier. 

It is possible, however, as shown by an example, for distinct bandpass 
functions to have the same signum function when neither has any free 
zeros. This is possible only when the passband spans an octave or 
more. 

Our main result is that (1) implies (2) when Ζ - Ζ(α,β) consists of 
those real-valued h(t) having no free zeros other than real simple free 
zeros and having spectrum confined to [«,/3] (and [—β,—α]), where 0 < 
« < β < 2a. 

The key to this result is the simple identity (37) 

hl(t)h2U)-h-,(t)hl(t)=git), 

where in terms of the representation (9), 

h,U) = P , ( 0 cos μί - q,(t) βίημί ii = 1,2), 

g is given by 

git) = p_,U)c7i(f) - piit)q-,(t). 
Here p, and q, are band limited to [-λ/2,λ/2] and, hence, g is band 
limited to [—λ,λ|, where λ = β — a. Then, if h \ and h> have enough 
common zeros |t/,.| = S, we can conclude from 

g(t,.)=0 all t); in S 

that 

KU) = 0, 

and, hence, that 

hAt) _h-,(t) 
h\U)~~ h>(t) 

Then, iî h \ and h> have no free zeros, i.e., no zeros in common with their 
Hilbert transforms, we can conclude that 

htlt) = Ah-,(t). 

The same conclusion can be obtained with some additional argument 
when 

/?,(£/,) = h-,itl:) = 0, all in S 

B A N D P A S S SIGNALS 489 



is replaced by 

sgn h\(t) = sgn h->(t) 

and h\ and h2 are allowed free zeros that are only real and simple. 
It is well known that g can have no more zeros, roughly speaking, than 

cos λί without vanishing identically. It is also known that h, must have, 
roughly speaking, at least as many sign changes as cos at. In any par-
ticular case, all we really need in addition to the free-zero constraint is 
that hj has, roughly speaking, more sign changes than cos λί, where λ 
is the width of the passband. This is always assured, then, when a > λ, 
i.e., when β < 2a, but of course may obtain in other cases. 

For the rigorous development of our results we first require some basic 
definitions. 

II. BAND-LIMITED FUNCTIONS 

These are restrictions to the real line of entire functions of exponential 
type, which are bounded on the real line. The standard reference on the 
subject is the book by Boas.- It is convenient to introduce a notation for 
subclasses of band-limited functions. 

Definition: Bp(X), (1 s p s «>) denotes the collection of functions f(t), 
- o o < t < oo, which belong to Lp on the real line and extend as entire 
functions / ( Τ ) , Τ = ί + iu, of exponential type λ, λ g 0. [ ß p ( 0 ) is empty 
except for ρ = <*>.] 

For 1 s p s 2, the functions in Βρ(λ) have ordinary Fourier transforms 
that vanish outside [—λ,λ]. This follows from the Paley-Wiener theorem 3 

for B> and the fact that* 

Thus, Β„(λ) containaßp(X) for all p g 1 and it has been shown 4 that for 
f in β „ ( λ ) (see Appendix), 

So, in a very real sense, the Fourier transforms of functions in Β„(λ) 
can be said to vanish outside [—λ,λ). 

III. BANDPASS FUNCTIONS 

These are bounded functions whose spectra are confined to the in-
tervals [α,β] and [—β,—a] where 0 < a < β < *>. 

* See Ref. 2, Theorem 6.7.18, page 102. 

BpiX) C βρ-(λ), p ' > p . (3) 

lim 
7* - * OD 

J*_?

r(l - ^ J ) / ( « > * ? - ' - ' d t = 0, | ω | > λ , (4) 
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Definition: Bpia,ß) denotes the class of functions of the form 

Λ ( ί ) = / ι ( ί ) β " " + / 2 ( ί ) β - , ' ' " . (5) 

where f\ and f> belong to Bpi\/2), 

λ = /J — « (0<a<ß<°°) (5a) 

α + β 
μ - (5b) 

2 

It follows from (3) that 

B„(a,ß) D β ρ ( α , 0 ) , 1 £ ρ < - , 

so we focus on the more general class ß «,(«,/}). 

Functions of the form (5) have Hilbert transforms (see Ref. 5) hit) 
given by 

hit) - - i / , ( i ) e " " + i/aiOe"''"'. (6) 

(We could take (6) as the definition of the Hilbert transform of a 
bounded bandpass function and show that it agrees with the usual def-
inition.) We have 

Ä(t) + iÄ(f) = 2 / , ( f V " (7) 

hit) - ih(t) = 2f2(t)e-i"' (8) 

We may write (5) and (6) in the forms 

hit) = pit) cos μί - qit) sin μί (9) 

fi(t) = pit) sin ßt+ qit) cos μί, (10) 
where 

pit) = / , ( f ) +f->U); qit) = if.it) - ifAt). (11) 

Then for real-valued hit), we must have ρ and q real and, therefore, 

hit) = hit). (12) 

That is, a real-valued function in BJa,ß) is completely described by one 
complex-valued function / in B^iX/2), λ = β — a, or equivalently by two 
real-valued functions ρ and q in β„ (λ /2 ) ; i.e., 

hit) = Re\fit)e'>"\, (13) 
where 

fit) = pit) + iqit), p,qEB„i\/2). (13a) 

It is sometimes convenient to exhibit one of the end points of the interval 
\a,ß] in the exponential factor by writing for (13) 

hit) = Re | / + ( t ) e " " | , (14) 
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where 

(14a) 

or 

h(t) = R e | / _ ( t ) e ' ' n (15) 

where 

(15a) 

In (14a) f+ is a function whose spectrum is confined to [Ο,λ] and whose 
real and imaginary parts χ and y belong to β„(λ) . In (15a) /_ is a function 
whose spectrum is confined to [—λ,Ο] and whose real and imaginary parts 
r and —s belong to β „ ( λ ) . In the form (14), h(t) may be interpreted as 
the upper single-sideband signal associated with x(t) and carrier fre-
quency a, whereas in (15), h(t ) may be interpreted as the lower single-
sideband signal associated with r(t) and carrier frequency β. Usually one 
thinks of y as the Hilbert transform of χ and s as the Hilbert transform 
of r. However, such a relation does not follow without further restrictions 
on /; e.g., / £ β ρ ( λ / 2 ) , ρ < <*>. Because χ and y (r and s) are interde-
pendent through ρ and q, the representation (13) is usually more con-
venient to work with. 

IV. FREE ZEROS OF BANDPASS FUNCTIONS 

If h belongs to Β^α,β) and Λ (ξ) = 0, then the function 

for arbitrary (a,6) certainly belongs to Β„(β), since g(r) is an entire 
function of exponential type β bounded on the real line. However, it does 
not follow that g belongs to Βα,(α,β). For this reason, it is not so easy to 
construct distinct bandpass functions having the same signum func-
tion. 

Definition: A complex (or real) number ξ is said to be a free zero of h if 
the function g defined in (16) belongs to Β„(α,β) whenever h belongs to 

Theorem 1: A complex (or real) number ζ is a free zero of a function h 
in ß „ (α,β) if and only if 

g(t) = 
at + b 

hit) (16) 

Β . ( α , 0 ) . 

h(S) = 0 

and 
Ä(£) = 0. 

492 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1 9 7 7 



(In other words, the free zeros of h are the common zeros of h and its 
Hilbert transform). 

Proof: In order for the function g in (16) to belong to B„(n,ß), it must 
be of the form (5); i.e., 

g(t)=glU)e"" +g2(t)e-"" (17) 

Μ Ι & . i n / M X / 2 ) . 

And since 
h(t) = Λ < ' > « " ' " ' +f->U)e-'>" (18) 

fuf-, i n f l J X / 2 ) , 
we must have 

Sil» = JZJ M) mBM/2) (19) 

/ , Ι ί ) inB_(X/2) (20) 
t - { 

and, therefore, we must have 

/ ι ( ί ) = 0 (21) 

f-AO = 0; (22) 
and, hence, from (6) 

M i ) = 0. (23) 

So h ( i ) = ft ( i ) = 0 is a necessary condition for ξ to be a free zero. On the 
other hand, if 

Λ (ξ) = / . ( Î l p ' " 4 + f-M)e-'^ = 0 (24) 
and 

M i ) = - ifM)e'»' + / / o ( i ) e - " ' i = 0, (25) 

it follows that 

/ ι ( ί ) = /·.·({) = 0, (26) 

and, hence, that g ι and defined in (19) and (20) belong to β„ (λ/2) and, 
therefore, that g defined in (16) belongs to Β^(α,β). Hence, M i ) = M i ) 
= 0 is a necessary and sufficient condition for i to be a free zero of h. In 
the course of the proof, we have established the following results which 
we label for future reference. 

Theorem 2: If h belongs to Β,,,(α,β) and h (ξ) = M i ) = O.theng(t) = (at 
+ b)/(t — i ) M O belongs to Β,,(α,β) and has the Hilbert transform 

êlt) = YRY hit) also in Β.Λα,β). 
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Theorem 3: The free zeros (if any) of a function of the form (5) are the 
common zeros of f\ and [•>, or equivalently, the common zeros of ρ and 
q in the representation (9). 

Corollary 3.1: A real-valued function h of the form (13) has a free zero 
ξ if and only if 

/(«) = f(l) = o. 

Corollary 3.2: If the function f(r), τ = t + iu, in (13) is zero-free in either 
half-plane u ϊ 0 or u ί 0 then h has no free zeros. 

In connection with Corollary 3 . 2 , we note that for / to be zero-free in 
the (closed) upper half-plane u g 0, it is sufficient that χ (ί ) defined in 
(14a) satisfy 

x(t) > 0, -<*> < f < » . (27) 

Also, for / to be zero-free in the (closed) lower half-plane u s 0, it is 
sufficient that r(t) defined in (15a) satisfy 

r(t)>0, - o o < f < o = . (28) 

This follows from the fact that a function f+(r) bounded and analytic 
in the upper half-plane may be represented by the Poisson integral" 

Hence, if Re |/+(i )| = x(t) > 0, then Re \f+(t + iu)} > 0 for u > 0. A similar 
statement holds for functions f-(r) bounded and analytic in the lower 
half-plane. 

Now the role of free zeros in the problem under consideration is made 
clear by the following: 

Theorem 4:lfh \ is a real-valued function in Β^(α,β) having a complex 
free zero ξ = a + ib, b > 0, or a multiple real free zero ξ, then there is a 
function h> in ß „ ( a , / 3 ) such that 

sgn | / ι , ( ί ) | = sgn \h2(t)\, — < ί < » 

and 

h2(t) Ahx(t), -« < t < co. 

Proof: It follows from Corollary 3.1 that if ξ = a + ib, b > 0, is a free zero 
of Λ i, then ξ = a — ib is also a free zero of h j . Hence, we may take h > to 
be 

" 2 ( 0 = - ^7 ; TT i n ß „ ( « , / 3 ) , ( 2 9 ) 
(£ — £)(£ — ξ) 
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where P2(t) is any polynomial of degree 2 satisfying 

P 2 ( f ) > 0 , - o o < / < o o , P2(t) * A(t - Ç)(t - ξ). (30) 

In case f is a multiple real free zero of h ι (i.e., of multiplicity 2 2), then 
(29) is still valid with ξ = £. 

The converse of Theorem 4 is not true. We need a condition on how 
often h \ and h2 vanish together. 

V. BANDPASS FUNCTIONS WHICH VANISH TOGETHER ON LARGE SETS 

Here we would like to investigate the implications of 

h l ( T k ) = h , ( T k ) = 0, a l l i e s , (31) 

where Λ 1 , h> belong to B«(a,/3) and S is a set of uniqueness for Β„(λ) , 
λ = β — a. We suppose that (31) does not imply that h\ or ho vanish 
identically. 

Definition: S = |τ/,| is said to be a set of uniqueness for Β„(λ) if 

g(t) i n ß . ( X ) 

and 

g ( T k ) = 0 all r t £ S 

imply 

g(t) = 0. 

We do not assume that h 1 and h ο are real-valued (on the real axis) and 
write, using (7), (8), and (11), 

M t ) ± i / i . ( i ) = iP i ( i )± i<7i ( t ) | e ± ' ' ' ' (32) 

h2(t) ± ih-,(t) = \p,(t) ± iq^t)^*', (33) 

where p\, q\,p->, q> are arbitrary functions in β«(λ /2 ) and μ = (α + β)/2 
> λ/2. Then, 

|/i ,(f) + ih,(t)\\hoU) - ih-,it)\ = |p i ( i ) + iqi(t)\\p-2(t) - iq2(t)\ (34) 

|/!,(r) - ihi(t)\\h-,(t) + ih2U)\ = |p,(r) - iqi(t)\\p2(t) + (35) 

It follows from (34) and (35) that 

ht{t)h2(t) + Ä , ( i ) Ä 2 ( 0 = P i U ) p 2 ( i ) + <7ι(Οσ 2(ί) e β » ( λ ) (36) 

£ , ( ί )Λ 2 ( ί ) - Α 2(ί)Λι(ί) = 9 ι ( ί ) ρ 2 ( ί ) - Ρ ι ( ί ) 9 2 ( ί ) G Β - ( λ ) . (37) 

Thus, the functions on the left in (36) and (37), apparently of type s 2β, 
in fact are of type ί Aas the functions on the right show. Then, from (37), 
if h ι(τ) and h>(r) vanish together on a set of uniqueness for β„ (λ ) , the 
functions on the right and left vanish identically. We state this result 
as a theorem for future reference, using the representation (9). 
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Theorem 5: Let hi and h> belong to ß™(«,/3) 

h](t) = ρ ι (f ) cos μί - <7i(f ) sin μί 

hi(t) = p-j(i) cos μί — q>(t) sin μί 

and 

A i ( i ) ^ 0 , h2(t)*=0. 

Then (31 ) implies 

and 

fti(r) Λ 2 ( f ) 

ρ,(ί)ι7 2 (ί) Ξ<7,(ί)ρ·2 (ί) , (39) 

and, hence, if q\q2 ^ 0, 

(40) 
q\(t) q2{t) 

We should note in connection with (40) that qi = 0 implies ρ , =zi 0 
(since h ι ^ 0) and, hence, from (39) that q> = 0. By symmetry, qxq-> = 
0 implies 

h lit) = ρ i(t) cos ßt, h ,(t) = p2(t) cos μί 
fii(t) = p i ( i ) sin μί, fi2(t) = p2(t) sin μί. 

We cannot, according to the hypotheses, have q \ = 0 and p2 = 0 (or ρ \ 
= 0,q2 = 0), i.e., 

h[{t) = p i ( i ) cos μί 

h2it) = q>(t) sin μί 

for then common zeros of h ι and h 2 are necessarily common zeros of pi 
and q2 so that (31) would imply, since pi and q-> belong to β„(λ /2 ) , that 
h ι =0,h> = 0, contrary to hypothesis. For a similar reason, qi = 0 (or q2 

= 0) implies that the set S in (31) includes a lot of the zeros of cos μί in 
(41). 

Now the function M(t) in (39) is a meromorphic function, the quotient 
of two functions in Β^(α,β) C B»(/i). The zeros of M(t ) are zeros of h \ 
not common to h \. Hence, if h \ and h*i have no common zeros, i.e., if h \ 
has no free zeros, then the zeros of M(t) are precisely the zeros of h \. The 
zeros of a band-limited function determine the function within an ex-
ponential factor which in turn depends on the (actual) spectral end 
points. It follows from a theorem of Titchmarsh" (with an additional 
minor argument) that the zeros of a function / in B^ifi) whose spectral 
end points are centered about the origin, i.e., a function whose spectrum 
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is confined to [-β',β'], (β' s β) but to no smaller interval, determine the 
function within a constant multiplier. For such functions, 

f(t) = At"' Π (Ί-—Y (42) 
Α·=1 \ Τ / , / 

where 
|r,,.+ i| S \Tll\ > 0 

with the product converging conditionally (owing to the ordering of the 
zeros). In particular, (42) holds for a band-limited function which is 
real-valued on the real axis. Hence, if h ι in Theorem 5 is real-valued on 
the real axis and has no free zeros, the zeros of M(t ) determine h ι within 
a multiplicative constant. M(t) is, in principle at least, determined by 
any non-null function in Β„(α,β), say ho, which vanishes on S. There is 
by hypothesis at least one such function. We may state this result as 
follows: 

Theorem 6: Let h ι and ho belong to Βπ(α,β) and be real-valued on the 
real axis and have no free zeros. Then, 

h\{rk) = h-zirk) for all τ*, in S, 

where S is a set of uniqueness for β „ ( λ ) , λ = β — a, implies (if ho ^ 
0) 

hx(t) = Ah2(t). 

Actually, for the problem at hand, we are interested in sets S which 
consist of points |tfc), where h ι and ho change sign. If this set has an upper 
density in excess of λ/π, then it is well known (see Levinson 8 for example) 
that S is a set of uniqueness for Β„(λ) . So in Theorem 6 we may take S 
to be any set |ί*| where the number v(T) of in the interval (0,T) 
satisfies 

v(T) 
lim sup - ! — - > λ/π. (43) 

Τ ·<» Τ 
Roughly speaking, if h ι and ho just vanish together (not necessarily 

change sign together) more often than cos λί, then the conclusion follows. 
We know, furthermore, that real-valued functions in Β^(α,β) must 
change sign (on either half line), again roughly speaking, at least as often 
as cos «ί . 
Theorem 7 (from Ref. 9): Let h be a real-valued function in B„(a,ß), 
h ^ 0, and denote by σ(Τ) the number of sign changes of h(t) in the 
interval (0,T). Then, 

,. . (σ(Τ) 
lim ιηί > α/π. 

τ Τ ~ 
Hence, we have (since lim sup ^ lim inf): 
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Theorem 8: In Theorem 6ifh\^0, we may always take S to be the set 
\tk \ where h\(t) changes sign provided a > λ; i.e., provided a > β/2. 

The necessity of the strict inequality a > ß/2 in Theorem 8 is shown 
by the one-parameter family 

h(t;a) = Re |(1 + iae")e"\, -xl2<a<H2 

= cost — a sin 2t = (1 — 2a sin t) cos t. (44) 

Here, h(t;a) belongs to B„( l , 2 ) and 

sgn|fc(i;a)) = sgnjcos i | , - i £ < a < i / 2 . (45) 

Also, h(t;a) has no free zeros, which follows by identifying / in (13) 
as 

f(t) = (1 + i'ae")«?-" / 2, 

which is clearly zero-free in the closed upper half-plane and, hence, by 
Corollary 3.2, h(t;a) has no free zeros. Yet all members of the family have 
the same sign. There are similar examples for B^im,n), m and η positive 
integers, m <2n. 

If h ι (ί ) changes sign at |£* |, then 

sgn |/i,(£)| = sgn|/i 2(OI 

is a stronger statement than 

hl(tk) = h2(tk) = 0. 

By replacing the latter condition by the former, we can with a little more 
work obtain the conclusion of Theorem 6 by allowing hx and h2 to have 
only real, simple, free zeros. (Note that h(t) may have a high-order zero, 
say at t = 0, and yet have only a simple free zero there that would require 
only that fi(t ) have a simple zero at ί =0 . ) This is the most we could hope 
for in view of Theorem 4 and the example in eq. (44). 

We denote by Ζ(α,β) the class of (real) bandpass functions that have 
no free zeros other than simple, real, free zeros. That is, 

Definition: Ζ(α,β), 0 < a < β < °°, consists of all real-valued functions 
h(t) of the form 

h(t) = Re | /( i)e""l, 

where μ = (α + β)/2 and f(t) belongs Β„(λ/2) , λ = β — a, and has no pair 
of complex conjugate zeros and no real zeros that are not simple. 

We should note that Zia,ß) includes all real-valued functions in 
B„ia,ß) that have only real simple zeros. For if /in is such a function, then 
fa in the above representation has no pair of complex conjugate zeros, 
since these are common zeros of ho and ho. Similarly, f0 can have no 

4 9 8 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1 9 7 7 



multiple real zeros, since these also belong to Λ ( ) and hO, and ho has only 
simple real zeros. 

Theorem 9: Let h \ and h-> belong to Ζ(α,β). Then, 

sgn = sgn \h,(t)\, -» < t < °= 

implies 

hiit) = Ah>(t), - o o < ί < » 

provided σ(Τ), the number of sign changes of h\(t) in (0;T), satisfies 
σ(Τ) β-α 

(ι) lim sup —— > . 
r -oo I if 

Furthermore, (i) is always satisfied ifh\ ^ 0 and (ii) a > β/2. 

Proof: We may assume that h ι ^ 0 and, hence, that ho ^ 0. Otherwise 
the conclusion is trivially true. Then, since hi and ho vanish together on 
a set of uniqueness for Β„(X), we have from Theorem 5, 

hi(t) _ho(t) 
aiU) h.,it)' 

M(t). 

The poles and zeros of M(t ) are determined by any non-null function 
in Βπ(α,β) that vanishes at the points of sign change. The zeros of M(() 
identify the zeros of h, that are not common to fi, ii = 1,2). That is, the 
free zeros of /i, are missing. All we have to show is that the locations of 
the free zeros of, say h ι, are uniquely determined by the zeros of M and 
the points of sign change of h ι and ho. It would then follow that h \ and 
h2 have the same set of zeros, and then the conclusion follows from 
(42). 

Denote by |£<,| the free (real, simple) zeros of h ι and by |τ/. | the zeros 
of M and define 

Iii; (46) 

Π„(ί) = Π (l -— ) e'hl: (47) 
k \ Tk/ 

where we have assumed, as a matter of convenience in writing, that ξ* 
? ί 0, τ/, ^ 0. [When the zeros of h ι are thus separated into two sets, the 
exponential factors are generally required to make the infinite products 
in (46) and (47) converge. We could have, for example, ξ* = k, k = 1,2,···.] 
We have by the Hadamard factorization Theorem* 

htit) = / ι 1 ( 0 ) ρ " Π ( ) ( ί ) Π 1 ( ί ) (48) 

* See Ref. 2 , page 2 2 . 
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for some real c, which is irrelevant to the argument. The |τ>| appear in 
conjugate pairs so both Πο(ί ) and Π [(f) are real-valued. We may assume 
that Λ ,(0) > 0 . Then, 

sgn|A,( i ) l = s g n | n o ( f ) | s g n | n , ( i ) | - ° ° < t < ° ° . (49) 

Now Πη(ί) and, hence, sgn |Πο(ί)| are (in principle) given and sgn 
\h\(t )| is known [except at even-order zeros of h i(t)]. We have 

sgn |n t(OI = sgn | n 0 ( i ) | s g n |/i,(£)l for almost all ί, (50) 

and since the zeros of Πι(ί) are real and simple, (50) defines them 
uniquely; i.e., they are the points where the function on the right changes 
sign. 

VI. THE ZEROS OF FULL-CARRIER LOWER-SIDEBAND SIGNALS 

In connection with condition (28), which is a sufficient condition for 
a function to have no free zeros and, hence, to belong to Ζ(α,β), it is worth 
noting that the condition is also a sufficient condition for the function 
to have only real simple zeros. In particular, functions of the form 

h(t) = Re [|1 + x(t) - i x ( i ) | e , r i ' ] , (51) 

where 

| x ( t ) | < l (52) 

and 

x,x (real) belong to δ „ ( λ ) , 0 ä λ < β, (53) 

which are called "full-carrier" lower-sideband signals, have only real 
simple zeros. We have the following more general result. 

Theorem 10: Let fbea (non-null) bounded band-limited function whose 
spectrum is confined to the interval [—λ,λ], 0 £ λ < °°, but to no smaller 
interval; i.e., e'"'f(t) does not belong to B„(\) for any μ different from 
zero. Also, let f(r), τ = t + iu, be zero free in the closed lower half-plane 
u £ 0. Then the zeros of the function h defined by 

h(t;ß) = Re\f(t)e""\ (54) 

are real and simple provided μ > 0, or provided μ îO if f ^ con-
stant. 

Note that Λ(ί;μ) in (54) need not be bandpass; i.e., we do not require μ 
> λ. The function is just a special kind of band-limited function. The 
result is independent of λ so long as λ < °°. The only significance of λ is 
to indicate that the spectral end points are centered about the origin. 
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Proof: The conclusion is trivial for / = constant, so we assume that / ^ 
constant and, consequently, has an infinite number of zeros. From (42) 
we have 

f(t) = f(0) π (ι - - ) , 
k=\ \ TK/ 

(55) 

where the product converges conditionally with the provision | T * . + 11 
I τ ι,-1. We have by hypothesis 

τ k = ak + ibk, where bk > 0. 

Then, 

2h(t) = e»"fit) + e-^'f(t) 

(U) 

fit) 
= e""f(t) 

We have 

Bit) 
fit) fiO),; Λ Ί V r t/_/(o) - V TJ_ 

Γ ι r\ \ 11 
fit) ^ ( 0 > j'j Λ _ , w , k = l / 1 _ ± . \ 

A = l V TkI \ T ) J 

iverges absolute! 

Σ ( ^ - ^ ) = 2 Σ , . , 
\Tic r/,7 \ T I ; \ -

Λ0) * - 1 

I 

where the last product converges absolutely since 

ι 1 - ) = 2 Σ I m | T / l 

> rk τ ι, 

converges absolutely.* Since 

t + iu 

1 -
ak — ib 

1 -
/ + iu 

ak + ibi, 

jak -tY2+ iu + b,;)2 

iah - f ) - ' + (u - M " 
< 1 for u < 0, 

we have 

Hence, 

\B(t + iu)\ < 1 for υ < 0 . 

(56) 

(57) 

(58) 

(59) 

(60) 

\Bit + i"u)e-'-"" + , "' | = eluu\Bit + iu)\ < 1 for u < 0. (61) 

Therefore, since fir) does not vanish on the real axis nor in the lower 
half-plane, it follows from (57) and (61) that hir) has no complex 
zeros. 

See Ref. Ii. Theorem fi.H.14. page Hfi. 
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Now log / (τ) is analytic in the upper half-plane and we may write 

fit) = |/(f)|e''" ('», (62) 

where 

φ(ί) = Im f log / (Ol and (say) (63) 

0 ^ φ(0)< 2π. (64) 

Then, 

hit) = | / ( 0 | cos M O + μί|. (65) 

Since fit ) does not vanish on the real line, the zeros of hit ) are the zeros 
of cos M O + μί). Now if cos \<p(tk) + μί*| = 0, then 

c'itk) = — cos (^(0 + μΟ| (=ί, = - I M + <p'(tk)\ sin Mth) + μί/,Ι (66) 
at 

or 

We have 

and 

B'jt) 
Bit) 

or 

\c'itk)\ = \ß + <P'(tk)\. (67) 

ß ( 0 = e -2 'V(O (68) 

= - 2 iV(0 = Σ 
1 

t - Tk t - Tk 

= - 2 ΐ . b k , , (69) 

= Σ „ 6 * , 9 > 0 · (70) 

Hence, if μ s 0, 

|c'(ifc)| > 0 (71) 

and, therefore, all zeros of h are real and simple. Since Im |/(0ε'"') = Re 
(-i /(0e'"' | the conclusion of Theorem 10 also holds for Im \f(t)e'"'\ and, 
since ^ ( 0 > 0 and since the zeros of cos [μί + <p(01 and sin |μί + <p(0) 
interlace (μ > 0), we have proved 

Theorem 1 1 : If f satisfies the hypotheses of Theorem 10, then the 
functions 

hiit-,μ) = Re | / (0e""l 

hoit-,μ) = Im | /(0e""| 

have all real, simple, interlacing zeros for μ > 0. 
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In applying Theorems 10 and 11 to functions of the form (51), we 
set 

git) = 1 +x(t) -Hit). 

The spectrum of g is confined to an interval [—α,Ο] (where a 5; λ) but not 
to an interval [—«,(], where t < 0. Otherwise (1 + xit)\ > 0 would belong 
to Β „(«,«) and would, therefore, have an infinite number of sign changes, 
which is a contradiction. We suppose further that the spectrum is not 
confined to a smaller interval; i.e., that α is the left end point of the 
spectrum. We then set 

» , > [iat 
fit) = git) exp — 

so that / meets the hypotheses of the theorem. Then writing 

h = Re \git) exp (ißt)\ 

iat\ 
= Re 

we may state the result as 

fit) exp (ißt - y ) 

Corollary 10.1: A function of the form i51) has only real simple zeros 
when the condition in (53) is replaced by β > λ/2 g 0. 

When β > λ, as in (53), h has a Hilbert transform hit) = Im [|1 + χ it) 
- i x ( i )k" J ' ] . So we have 

Corollary 11.1: A function h of the form (57) and its Hilbert transform 
h have only real, simple, interlacing zeros. 

We state one more result which follows from the proof of Theorem 
10: 

Theorem 12: Let f be a bounded inon-null) band-limited function whose 
spectrum is confined to the interval [α,β] but to no smaller interval, 
and let fir), τ = t + iu, be zero-free in the upper half-plane u 2 0 . Then 
the phase function <^(i), defined uniquely by 

ii) tpit) is continuous 
Hi) 0 ^ v5(0) < 2 ir 

iiii) fit) = | / ( i ) | e ' v , i l 

satisfies 

Uu) φ'ϋ)^—^. 
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It follows, in particular, if x(t ) is a positive function in β „ ( λ ) and has 
a Hilbert transform x(f) and 

„(f) = t a n - i ^ , 
x(t) 

π , , π 
- 2 < ^ ) < 2 . 

then 

<S(t)% λ/2. 

(Since χ is positive, the smallest interval containing the spectrum of 
χ + ix is [Ο,λ'] for some λ' 5 = λ.) We note that without further qualifica-
tion, χ must be bounded away from zero in order to obtain a (finite) lower 
bound for as the example 

x(t) = 1 + a cos t, (a = 1 - t ) 

shows. 

VII. DISCUSSION AND CONCLUSIONS 

The zeros of a bandpass function h that can be moved around without 
destroying the bandpass property of h; i.e., the free zeros of h play a key 
role in the problem here and it is safe to assume that they will be im-
portant in other problems. We have shown (Theorem 1) that the free 
zeros of h are simply the common zeros of h and its Hilbert transform 
h (whether or not h (i ) is real). It follows (Theorem 2) that moving a free 
zero of h simply alters its Hilbert transform in the same way; i.e., only 
the corresponding (common) zero of h is moved. 

If we are given a large enough subset S of the zeros of h, then (Theorem 
5) S determines h/fi. Without further qualification of S or h, this is all 
that S determines. If real-valued h has enough sign changes, slightly 
more (roughly speaking) than cos λί, where λ is the width of the pass-
band (of the whole class), then the zero crossings |f * | constitute a set S 
which determines h/fi. This, without further qualification, is all the in-
formation the zero crossings may convey. If, in addition, it is known that 
h has no free zeros, then under the stipulated conditions jit) determines 
h within a constant multiplier. 

If h has free zeros, then we cannot determine (a multiple of) h(t ) from 
sgn |Λ(ί)|, because (Theorem 4) there are other functions in the same 
class having the same signum function. In this connection, we note the 
following: 

In the representation 

Mi;/ i ) = Re | / ( t ) e f '" l . μ > λ/2, 
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where / is regarded as a fixed (complex-valued) function in β,,,ίλ/2) and 
μ as a parameter, the zero crossings of h(t;μ) for arbitrarily large μ give 
no more information about / than for μ = 3λ/2 + t, t > 0 (when the band 
spans less than an octave). The free zeros of h(t ;μ), which are crucial to 
identifying h (or / ) are invariant with μ. 

These results may be generalized and specialized in various ways. We 
should note a specialization to functions of the form 

hit) = cos μί — σ(ί) sin μί, 

where q(t ), real, belongs to ß , (λ/2) and μ > λ/2. This describes a com-
mon sort of phase modulation. Here h(t) has no free zeros because the 
corresponding function in (13), 

fit) = 1 + 19(f) . 

clearly has no real zeros, and if £ is a complex zero of / we have 

<*(*) = i 

and, hence, since q(f ) is real, 

9(f) = - ι 
and so 

fil) = 2. 

Thus (Corollary 3.1) h has no free zeros. Then, if we consider two func-
tions h 1 and hi of this form and return to the basic identity (37), we have 
Pi = Pi = 1 and 

Ä,(f )/i a(f ) - h-,(t)h,(t) = 9 i ( t ) - (72(f). 

which belongs to β „ ( λ / 2 ) rather than β « ( λ ) . Now, 

Λ,-(Απ/μ) = c o s f e T T = ( - 1 ) * , k = 0, ± 1 , ± 2 , · · ·, (1 = 1,2) 

so hj(t) has at least as many sign changes as cos μί. Thus, if μ > λ/2 (just 
enough for high-pass), the zero crossings | i* | of / j , constitute a set of 
uniqueness for β „ ( λ / 2 ) , which is all we need to conclude that 

sgn M i ) = sgn h2it) 

implies 

q,U)-q2(t) = 0 
i.e., 

hid) = h2(t). 

In this case the recovery problem is much simpler than in the general 
case. Here we are given 

q(tk) = cot μί/,, all tk in S, q in β „ ( λ / 2 ) , 
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and seek q(t); i.e., knowing p ( i ) = 1 vastly simplifies the problem. 
As to generalizations, the results may be extended to bandpass func-

tions that are not bounded (e.g., sample functions of gaussian processes). 
We can replace β „ ( λ ) by β ( λ ) , which consists of restrictions to the real 
line of entire functions of exponential type λ whose growth (on the real 
line) is less than exponential (see Ref. 7). The zeros of these entire 
functions have ordinary densities, separately in the right and left half-
planes, which are equal and do not exceed \/IR.7 Hence, sets | f | of upper 
density greater than X/Π constitute sets of uniqueness for β ( λ ) . 

It is clear from the Hadamard factorization 

that the zeros | τ/,. | of real-valued / in β ( λ ) determine / within a constant 
multiplier. Since the η occur in conjugate pairs, the product is real-
valued on the real axis and, hence, the exponent c must be real. Then 
c will be determined by the condition that the growth on the real axis 
be less than exponential. 

Then we define B(ctß) analogous to Β^,(αβ), and for h in Β(α,β), we 
let h be defined by the right-hand side of (6) with f\ and /·> in Β(λ/2), and 
simply call it the generalized Hilbert transform of h. It is not important 
what we call it; the free zeros of h are still the common zeros of h and h, 
or equivalently the common zeros of ρ and q. Then Theorem 7 must be 
generalized to Β(α,β). It is clear that the proof in Ref. 9 extends easily, 
so all the uniqueness results may be extended to Β(α,β). 

In connection with this generalization, it might be interesting to study 
the free zeros of sample functions of bandpass gaussian processes \h\. 
The free zeros are going to be very rare (in the ergodic case) to say the 
least. It may be advisable to begin the study with the case of periodic 
sample functions. 

There are still other questions that arise in connection with the 
problem considered here. For example, we have not shown that given 
an arbitrary real h in Β „ ( a ß ) there is a corresponding function in Z(aß) 
having the same signum function. The difficulty occurs when h has an 
infinite number of free zeros which, for example, may be complex and 
restricted to the right half-plane and have positive density there. (Such 
functions can be constructed on the basis of Corollary 3.1.) The Hada-
mard product composed of the free zeros will then not even belong to 
the broader class Β(·) just discussed. The remaining zeros will not have 
equal densities in the right and left half-planes and, hence, the Hada-
mard product composed of these zeros will not belong to Β(·)· There 
seems to be no way to replace the free zeros with non-free zeros and ob-
tain a function in Ζ(αβ) with the same signum function as h. It appears 
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that the argument can be completed to prove that the proposition is 
false. 

Another problem is that of characterizing those h for which there is 
not another distinct function in the whole class B*,(a,ß) having the same 
signum function. Of course, h must belong to Z{a,ß) but now other 
arguments of a Fourier nature are required. The end points of the 
spectrum play an important role in this problem. For example, cos «ί 
and cos ßt are special functions in Ζ(α,β) which for β < 2a meet the 
conditions of the problem, a result we state without proof. It appears that 
the "full-carrier" sideband signals, which have spectrum at one or the 
other end points, are also special functions of this type when β < 2a. The 
decay of h(t) also enters in the problem; i.e., (1 + t2)h(t) must not belong 
to Β„(α,β). The basic idea is that one should not be able to multiply h(t) 
by a positive function and obtain a function in Β^,(α,β). This obviously 
will be possible if the spectrum of h is confined to [α',β'] (and [—β',—α']), 
where a < a' < β' < β. 

Given h(t ) in a form other than (13) with an explicit factorization of 
/ , it is obviously difficult to determine whether or not h belongs to Ζ(α,β). 
However, it is easy to synthesize functions in Ζ(α,β), e.g., the full-carrier 
sideband signals. 

The problem of actually recovering functions in Ζ(α,β) from their zero 
crossings appears to be difficult (to say the least) under the most general 
conditions for uniqueness. A general "method" suggested by the proof 
of Theorem 9 requires first finding any non-nul l test function in B_(« , /9 ) 
that merely vanishes at the points of sign change or some subset of the 
points that constitute a set of uniqueness for β „ ( λ ) . However, this in 
itself is a difficult, if not intractable, problem except in the simple pe-
riodic case. Assuming such a test function to be found, it will, in general, 
have complex free zeros and/or real free zeros which the sought after 
function h does not have. So, in effect, the test function and its Hilbert 
transform must be factored to discard common zeros (free zeros), which 
amounts to finding the zeros of M(t) in (38), or the poles and zeros of 
N(t ) in (40). Then one constructs as in the proof of Theorem 9, a function 
flo(t) with the zeros of M( i ) , i.e., the non-free zeros of h. Then the 
missing (real simple) free zeros of h can be determined by comparing the 
sign changes of Π 0 ( ί ) and the given sign changes of h(t) as in (50). 

The overall recovery procedure is obviously hopeless except in the case 
of periodic functions. There may be some simpler procedure under more 
restrictive hypotheses; e.g., condition (27), ensuring that / be zero-free 
in the closed upper half-plane. Condition (28), ensuring that / be zero-
free in the closed lower half plane, was shown to imply that the corre-
sponding h (e.g., a full-carrier lower-sideband signal) has all real simple 
zeros, in which case h can be recovered by forming an infinite product 
having simple zeros at the points of sign change. This fact, aside from 
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questions of practicality, might suggest a preference in full-carrier 
sideband transmission for the lower sideband. 

The results here have theoretical interest in that they provide a sat-
isfactory answer to the general qqestion as to what information (in our 
sense) is conveyed by the zero crossings of bandpass functions. As far 
as practicality is concerned, the results cannot be extrapolated with 
abandon to "almost bandpass" functions. Although there is no argument 
with the assertion that practical signals can be closely approximated with 
bandpass signals, it does not follow that there even exists a bandpass 
signal (to which the results apply) with the same zero crossings as the 
practical signal, much less one which has the same zero crossings and 
is everywhere close to the practical signal. Clearly one must have a very 
severely constrained class of signals in order to assert that the zero 
crossings "closely" determine the signals. 

APPENDIX 

Here we sketch a proof of the fact 

lim f\.(1-^) f(t)e-'-'dt = 0, for |ω| > λ, 

/ i n ß „ ( X ) . (72) 

First we set 

h(t) = h(t;w) = f(t)e-iul, / inß« , (X) (73) 

and observe that for |ω| — λ = α > 0 (ω = real), h belongs to the class 
/ / » ( « ) consisting of all bounded functions h (high-pass functions) sat-
isfying 

f~gU)hU)dt = 0 a l l g i n ß i ( a ) . (74) 

Indeed, f{t)g(t) belongs to ß i ( o + λ) and, hence, its Fourier transform 
is continuous and vanishes outside (—ββ), β = a + λ. 

Let us then define 

C(i;T) = l - ^ , \t\sT (75) 

= 0, | i | > T . 

Then we wish to prove 

lim f " C(t;T)h(t)dt = 0, h in / / „ ( α ) (« > 0). (76) 
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There are several ways to prove this. In Ref. 4 we used the notion of 
the "unbiased" integral of hit ), denoted by ft(~n(£), which is a particular 
integral of h also belonging to Η Λα). In general, we may define the nth 
unbiased integral of h by 

Λ , _ η , ( ί ) = J h(x)K„(t -x)dx, n = 1 , 2 , · · ·, 

h in Η Λα) (77) 

where K„ is any kernel of L \ whose Fourier transform satisfies 

J * K„(t)e-'«'dt = (/ω)-" for |u>|grt . (78) 

Then we can show that ft'-"' in fact does satisfy 

hl-">{t)dt = / ι 1 " " - n ( 6 ) - h'-"~])(a) 

( - c o < a < b < °°). (79) 

It suffices to show this for η = 0, ft"" = ft, and then use induction. 
Achieser 1" shows (in another context) that the minimal L|-norm 

kernels have norm 

I J t . 1 , - „ - . A - - « # . · « 0 . 

Then we have, integrating twice by parts, 

j" C(t;T)h(t)dt = i | - 2 f t , - - » ( 0 ) + h^'HT) + Λ ( - - > ( - 7 ) | (81) 

and.hence, 

| J " CU;T)hit)dt 
4M-
— - ; s u p | f t ( f ) | , ft i n / / > ( « ) . (82) 
α - Γ ί 

Then (76) and (72) follow from (82). 
Actually, for ft of the form (73) we can replace M- in (82) by 1. For ft 

having one-sided spectrum, say the half line [«,°°), « > 0, we only re-
quire 

J KnU)e-'--'dt = (iœ)-" f o r u > 2 : i ï > 0 . (83) 

Here we may obtain the minimal-norm kernels simply by making their 
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Fourier transforms even about ω = α. It then follows from convexity 
that 

K„(t) = ( ί ) - π ρ π ( ί ) β ί ο ' , wherep„(t ) > 0 (84) 

and 

\Kn(t)\dt= J pn(t)dt = a-». (85) 
J — OD — OD 

In general, if one defines a class of bounded functions having a spectral 
gap (a,b) by an orthogonality condition similar to (74), then a simple 
modification of the proof gives the gratifying result that their Fourier 
integrals are actually summable (C,l) to zero in the gap. 
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