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For more than a century, science fiction authors and 
screenwriters have imagined machines able to converse 
naturally with humans. In 1960, J.C.R. Licklider pre-

dicted powerful man–machine symbiosis, perhaps including  
conversational interaction by voice. Today, successful human 
language technology (HLT) underlies a growing array of 
increasingly popular consumer products and services, 
such as Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, 
Google’s Google Assistant, and other voice-controlled digital  
helpers; Google’s Google Translate; Nuance’s Dragon Natu-
rally Speaking; complex commercial systems, such as IBM’s 
Watson; and a wide variety of defense, intelligence, and 
industrial applications. All of those capabilities resulted 
from robust efforts with academia and industry funded by 
the Defense Advanced Research Projects Agency (DARPA), 
followed by subsequent improvements and product devel-
opment by industry.

DARPA’s role in producing the core enabling technologies 
is an interesting, multipart story. To keep it manageable, this 
article concentrates on just three major thrusts — automatic 
transcription, translation, and content analysis — and 10 
seminal programs from 1971 through 2011, highlighted in 
figure 1.

DARPA’s Common Task Method — a virtuous cycle involv-
ing shared objectives, data, and evaluations — powered 
the successes. The cycle begins with ambitious technical  
challenges and quantitative performance targets estab-
lished by DARPA and continues with data acquisition and 

 Human language technology encom-
passes a wide array of speech and text 
processing capabilities. The Defense 
Advanced Research Projects Agency’s 
pioneering research on automatic tran-
scription, translation, and content 
analysis were major artificial intel-
ligence success stories that changed 
science fiction into social fact. During 
a 40-year period, 10 seminal DARPA 
programs produced breakthrough capa-
bilities that were further improved and 
widely deployed in popular consumer 
products, as well as in many com-
mercial, industrial, and governmental 
applications. The Defense Advanced 
Research Projects Agency produced 
the core enabling technologies by 
setting crisp, aggressive, and quantita-
tive technical objectives; by providing 
strong multiyear funding; and by using 
the Defense Advanced Research Pro-
jects Agency’s Common Task Method, 
which was powerful, efficient, and 
easy to administer. To achieve these 
breakthroughs, multidisciplinary aca-
demic and industrial research teams 
working in parallel took advantage of 
increasingly large and diverse sets of 
linguistic data and rapidly increasing 
computational power to develop and 
use increasingly sophisticated forms 
of machine learning. This article 
describes the progression of technical 
advances underlying key successes and 
the seminal programs that produced 
them.

Human Language Technology

Mark Liberman, Charles Wayne
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annotation, parallel research efforts, and objective 
evaluations. Workshops are held to discuss evalua-
tion results, data, technical approaches, and future 
directions; program managers make adjustments; 
and the cycle repeats until the program attains its 
goals or exhausts its funding.

Objective performance evaluations were essential. 
From the mid-1980s onward, the National Institute 
of Technology administered most of DARPA’s official 
HLT performance evaluations. Working closely with 
DARPA and the research community, NIST defined 
evaluations to benchmark progress, selected test sets, 
created scoring software, administered evaluations, 
analyzed results, and organized workshops.

Vast quantities of data were also critical. From the 
early 1990s onward, the Linguistic Data Consortium 
(LDC; created via a DARPA grant) acquired, anno-
tated, and distributed most of the speech and text 
data used in DARPA’s HLT research and evaluations. 
The LDC’s catalog currently contains terabytes of 
data spanning approximately 900 datasets. The 277 
datasets associated with the Global Autonomous 
Language Exploitation (GALE) program span Arabic,  
Chinese, and English; include recordings and tran-
scripts of broadcast news, broadcast conversations, 
and talk shows; and encompass newswire and mag-
azine text, newsgroups and blogs, treebanks, lex-
icons, and more. In addition to meeting DARPA 
program needs, DARPA-funded data have fueled a 
great deal of other important academic and indus-
trial research.

The Common Task Method was an enduring, ener-
gizing feature of all but one of the seminal programs 
described below. When DARPA opened HLT evalu-
ations and workshops to interested research groups 
around the world, major contributions often came 
from researchers not funded by DARPA. This method 
has spread widely within artificial intelligence (AI)- 
related fields, leading to literally hundreds of open 
technical challenges. But, in many areas (for example, 
clinical, educational, legal applications) where such 
methods could be helpful, they remain rare or absent.

Technical Advances
This section describes key technical advances within 
each of the three thrusts. The Automatic Transcription 
thrust started first and provided valuable lessons for 
the other two.

Automatic Transcription
Automatic transcription — otherwise known as auto-
matic speech recognition (SR) or speech-to-text (STT) —  
converts speech to its text equivalent. In the simplest 
form of this technology, the input is a stream of digital 
audio and the output is a stream of digital text. Com-
plexities abound as systems must deal with different 
speakers, languages, styles, and contexts. Researchers 
explored many different approaches, and four les-
sons emerged: Learning is better than programming; 
Global optimization of gradient local decisions is cru-
cial; Top-down and bottom-up knowledge must be 
combined; and Metrics on shared benchmarks matter.

HLT: First Steps to Success
The Advanced Research Projects Agency (ARPA, later renamed DARPA) supported AI research from 
the beginning. In 1963, under the leadership of J.C.R. Licklider, ARPA provided funding for AI 
research at Carnegie Mellon University, the Massachusetts Institute of Technology, and Stanford.  
I was a graduate student at Stanford in 1963 and was the beneficiary of that funding of what turned 
out to be the beginning of ARPA/DARPA-funded research in spoken language technologies.

In 1971, at DARPA’s request, a committee chaired by Allen Newell produced a report that 
recommended a five-year research effort toward a demonstration of a large vocabulary connected 
speech understanding system. For the first time in ARPA history, there were specific performance 
goals: the resulting system should accept connected speech from many speakers, use at least a 
1,000-word vocabulary within a task-specific environment, and perform with less than 10 percent 
semantic error. It was to run in real-time on a 300-million-instructions-per-second computer 
(projected power of multiprocessor-computer that may be available by 1980).

The report was prescient in many ways. Tools and techniques that were developed at that time 
continue to be used. Knowledge representation using hidden Markov models (HMMs) and 
beam search turned out to be enduring techniques, still used after four decades. But, we missed the 
relevance of many other topics: importance of large data sets; automated learning and discovery of 
knowledge sources; and development of machine learning (ML) techniques, such as statistical ML.

In retrospect, it was to be the first Grand Challenge task from DARPA. It was ambitious 
and successful. It would take the community another 40 years to demonstrate systems that 
could recognize unrehearsed spontaneous speech from an open population, a task many of us 
believed was impossible in our lifetime. To its credit, DARPA continued to support HLT research 
throughout the period.

– Raj Reddy
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An effective STT system must cope with complexity 
on many interacting levels, from words and word 
sequences to speaker characteristics, audio environ-
ments, and recording systems. Rather than trying 
to address this complexity via hand-crafted rules, 
successful systems use ML to distill large bodies 
of training data into millions of parameters rep-
resenting actionable knowledge about these levels 
and their relationships.

Like many other AI problems, automatic tran-
scription requires global optimization. An STT system 
considers thousands of possible words in recogniz-
ing each single word, and correspondingly makes an 
astronomically large number of interconnected deci-
sions in recognizing connected speech. A successful 
system must combine those decisions to produce a 
globally optimal result, meaning that local decisions 
should be gradient rather than categorical — defined 
by probabilities or other soft scores rather than specific 
and final choices. Correspondingly, the methods for 
combining local decisions should also have gradient 

outputs, up to the point where a system must commit 
itself to a determinate final answer.

Successful systems need top-down knowledge about 
the text streams that are their putative outputs as well 
as bottom-up knowledge about the audio streams that 
are actual inputs. They also need to find practical and 
effective ways to integrate those knowledge sources 
into the recognition process and to adapt them to new 
circumstances. All of these forms of knowledge should 
be gradient and should be learned from training data.

The substantial overall improvement in STT perfor-
mance over several decades was the cumulative result of 
thousands of experiments, many of which were unsuc-
cessful. Small successes built upon each other through 
the Common Task Method pioneered by DARPA.

Versions of these same four lessons have played 
a central role in the other areas of HLT described 
below, and across AI research in general. But it was 
in DARPA’s automatic transcription programs that 
these lessons were first learned, before spreading 
to other areas.
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Statistical Models
The first systems to embody the four lessons given 
above were inspired by Claude Shannon’s noisy channel 
model, which represents information transmission as  
a stream of symbols encoded by a source, transmitted 
over an imperfect channel, and then decoded by 
a receiver. In the application to automatic transcrip-
tion, the symbol stream at both input and output is 
text; the encoder is a human speaker who turns the 
text into speech, the transmission adds noise, and the 
decoder attempts to recover the original input.

The first glimmer of a successful solution emerged 
in the early 1970s, as part of DARPA’s first speech 
program. The idea was to consider that the human 
encoder (that is, the speaker) first encodes a string 
of words into dictionary pronunciations described 
by phonetic symbols, termed phones. In the second 
step, the phones are encoded as sounds repre-
sented as a probability distribution over sequences 
of spectral vectors, allowing the system to assign 
a probability about the time-linked correspond-
ence between a word string and an audio clip. The 
independence assumptions built into the statistical 
model made it feasible, in principle, to perform a 
parallel search for the initial string of words and find 
a globally optimal solution.

Systems of this type typically use HMMs, in which 
the underlying word sequence is treated as a Markov 
chain and we can observe only a probabilistic func-
tion of that sequence, namely the sounds. In gen-
eral, an HMM is represented by two tables: a table 
of transition probabilities among the hidden states, 
and another table specifying each state’s distribution 
over observables.

In the case of SR, the hidden states are words, and 
the transition table is known as a language model. 
The words are broken down into phonetic segments 
analogous to those in a dictionary’s pronunciation 
fields (phones) and these are related to snippets of 
an audio recording via an output table known as an 
acoustic model. If we have a sufficiently large volume 
of transcribed and phonetically segmented training 
material, we can estimate the values in these tables 
by simple observation (with the usual caveats about 
statistical estimation).

HMM parameters can be estimated without hand- 
segmented training data, and the forward–backward 
algorithm makes it possible to train systems on hun-
dreds or thousands of hours of material, because the 
only requirements are audio recordings and corre-
sponding transcripts.

HMMs became the dominant paradigm in the mid-
1980s and opened a vast algorithmic space for explo-
ration. For example, because phonetic segments are 
not in general uniform, and vary in length, one can 
try expanding each segment as a number of variably- 
connected substates. Because phonetic segments are 
strongly affected by their context, phones might be 
replaced by phones in context, such as triphones. 
Such replacements make statistical estimation a serious 

challenge; instead of 40 or so phones, in principle 
there could be 403 triphones with five substates per 
phone, each of which needs to specify a multivariate 
distribution over sounds.

Neural Models
We expressed the four key lessons in a somewhat 
abstract form above, using terms such as learning and 
gradient decisions, in contrast to writing more specifi-
cally about statistics and probability as we might have 
10 or 15 years ago. At that earlier time, SR algorithms 
were explicitly framed as the application of complex 
statistical models. More recently, we have seen a resur-
gence of deep learning and neural net algorithms.

Since the 1940s, researchers have explored the idea 
of connecting inputs to outputs through complex 
networks of weighted sums with interspersed thresh-
olds and other simple nonlinearities. These networks 
can be viewed as radically simplified models of the 
neural networks in animal brains, and in principle 
can be programmed to compute any computable 
finite function. A suitably designed network can 
learn the weights needed to solve a given problem. 
As computers became exponentially more powerful, 
and increasing amounts of training material became 
available, improved algorithms were developed 
for configuring and training such neural systems. 
Producing greater accuracy than HMMs for STT, they 
have become an increasingly important part of ML 
and AI, as discussed in other articles in this issue.

Systems of this kind are perfectly adapted to imple-
ment our four lessons, and therefore they easily fit 
into AI research programs, in HLT as in other areas, 
supplementing or replacing the statistical models that 
led to the earlier generation of successes.

Automated Evaluations
Simple, automated evaluations played a crucial role in 
DARPA’s HLT successes. For instance, to evaluate auto-
matic transcription performance, DARPA adopted word 
error rate (WER) as its standard metric. WER matches a 
system-generated transcript to a human reference tran-
script, adds up substitutions, insertions, and deletions 
(that is, errors), and divides by the number of words in 
the reference transcript.

There are obvious problems with the WER metric — 
not all errors cause equally important changes in 
meaning, and many errors can simply be ignored. 
A better measure would accurately reflect the suit-
ability of the system’s output for a specific task. 
However, such measures are often impossible to 
automate. The fact that WER is easily computed and 
task-independent, enabled an extraordinary record 
of success in improving STT technologies during dec-
ades of DARPA-sponsored HLT research.

Automatic Translation
Automatic translation is the conversion of speech or 
text between languages. Modern automatic translation 
systems have been based on the same noisy channel 
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model used to frame the STT transcription problem. 
Applying this metaphor to automatic translation, we 
assume that someone means to say something in 
English, but as a result of encoding and channel noise, 
it comes out in some other language, say Arabic 
or Chinese, and the receiver then uses a statistical (or 
neural) model to decode the sender’s English intent.

In the simplest form of the decoder for translating a 
foreign language to English, each input word is asso-
ciated with a probability distribution over a set of 
English words. Each possible arrangement of these 
English words is then scored as a combination of its 
intrinsic estimated probability as an English-language 
sequence (its language model score) and the proba-
bility of its constituent words as translations of the 
foreign-language input. Translation from English to 
another language is the same process in reverse.

That original form, investigated almost 30 years ago, 
has been superseded by more sophisticated models, but 
all versions fit the first three of our four lessons. Such 
systems need parallel text in the two languages for 
training to learn probabilistic associations between 
words and monolingual text in the target language to 
train the output language model. Improving the model 
requires an easy-to-compute measure for benchmarking.

The challenge in automatic translation, as opposed to  
automatic transcription, is that there are many different  
valid translations, involving many possible choices 
of words and word orders. The BiLingual Evaluation 
Understudy (BLEU) measure allows for that variation, 
but in a way that strikes many people as implausible.  
BLEU evaluates a candidate translation against a 
small set of alternative human translations by asking 
what proportion of its words and word sequences can 
be found, in any order, in any of the corresponding 
human-translation sentences. The scores are then aver-
aged across all the sentences in the test set.

Despite its simplicity, BLEU correlates reasonably 
well with human judgments, allowing researchers to 
hill-climb in the space of possible variations on the 
simple noisy channel translation model, just as they 
did using WER in the area of automatic transcription. 
The result was the same: steady progress over several 
decades, to the point that automatic translation sys-
tems are now used effectively by many millions of 
people every day. The BLEU experience shows that 
even a crude evaluation metric can serve to foster 
significant technical progress in programs that also 
adhere to the first three lessons.

Automatic Content Analysis
The goal of automatic content analysis is to turn lan-
guage into information. This can take many forms 
and must cope with many challenges.

For example, one simple content-analysis goal 
could be to detect entities (for example, people, 
places, organizations, etc.) mentioned in a text. 
But a person might be referenced by first and last 
name, by title and last name, by a pronoun, or by a 
description. A company might be referenced by a full 
formal name, by a shortened name, or by initials. 

The automatic content analysis goal might simply be 
to flag this information, but it might also be to com-
bine results from multiple sources, summarize facts, 
or track a topic or event.

As in automatic transcription and automatic transla-
tion, approaches to automatic content analysis began 
solely with handcrafted rules, which were expensive 
to create, limited in both performance and scope of 
application, and brittle when applied to real-world 
problems. Again, solid and sustained progress began 
when researchers, in the context of DARPA programs, 
replaced most if not all of the handcrafting with ML. 
Researchers designed systems that combined gra-
dient local evidence into globally optimal decisions, 
found ways to integrate learned knowledge at dif-
ferent levels and from different sources, and evolved 
their algorithms through evaluation on shared tasks 
with well-defined automatic measures.

Through a continuing series of DARPA programs, 
described in the next section, content-analysis research 
developed a rich, and continually expanding, set of 
tasks, datasets, measures, and algorithms.

Seminal Programs
This section describes the seminal programs within 
the three thrusts. The first program listed under each 
thrust was essentially a warmup; more ambitious, 
better informed programs followed it, sometimes years 
apart. Text, Radio, Video, Speech (TRVS), Translingual 
Information Detection, Extraction and Summarization 
(TIDES), and GALE appear under multiple thrusts.

Automatic Transcription
Over a span of 40 years, DARPA drove significant tran-
scription technology advances, making transcription 
more effective for a wider variety of speech, across 
forms, languages, and genres. Table 1 highlights the 
key programs and the types of speech each attacked.

Speech Understanding Research addressed a simple 
type of speech: short information-seeking queries from 
a 1,000-word vocabulary with a highly constrained 
syntax. DARPA funded several research groups, chal-
lenging them to construct end-to-end systems able to 
transcribe and understand the queries well enough 
to produce a correct response. That was the outer 
limit of what experts thought could be possible, and 
no one knew whether it could be achieved.

The groups took advantage of the considerable 
knowledge scientists and engineers had regarding 
speech production, perception, and analysis to design 
complex systems incorporating mixtures of hand-
crafted rules and statistical models that integrated 
multiple sources of knowledge. In addition to pro-
ducing a system that exceeded DARPA’s goals, these 
efforts laid useful groundwork for future advances. 
But despite Speech Understanding Research’s suc-
cess, DARPA chose not to extend the work primarily 
because 1970s computational power could not sup-
port real-time applications.

After a 10-year hiatus, DARPA resumed work 
on automatic transcription by launching a series of 
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increasingly ambitious research programs attacking 
various styles of speech in multiple languages. Taking 
advantage of increasing computational capabilities 
and data availability, these programs produced ever 
more powerful transcription algorithms.

The evolving transcription systems incorporated 
increasingly sophisticated acoustic models that cap-
tured the variability of speech sounds (within and 
across words) and language models that captured how 
words are strung together. The models were trained 
on large quantities of spoken and written data.

From 1986 through 2004, DARPA focused on 
driving down WER — a simple, objective measure 
of accuracy introduced previously — computed by 
comparing a system’s output to an official transcript 
and counting substitutions, insertions, and deletions 
as errors. Figure 2 shows the speech styles attacked 
and the WER reductions obtained by the best speaker- 
independent transcription systems from 1988 through 
2004. The various lines do not always decline mono-
tonically as one would expect, because NIST chose 
new test sets for each evaluation, some unintention-
ally harder or easier than others.

DARPA-funded researchers had to participate in 
periodic open evaluations and workshops; outside 
groups were permitted to participate as well, with 
DARPA providing linguistic data but no funding. 
This mutually beneficial arrangement increased com-
petition, introduced new ideas, and accelerated pro-
gress while simultaneously conferring the credibility 
and access sought by the volunteers. All participants 
had to share their data and describe their algorithms, 
thereby accelerating progress. And, because NIST 

provided automated software for calculating WER, 
researchers could perform algorithmic hill-climbing 
on their own test sets and conduct in-house evalua-
tions on set-aside data. The result was strong, steady 
progress. Year-to-year improvements were rarely dra-
matic, but the cumulative effects were. The resulting 
technology now empowers countless applications.

In a series of steps, SR significantly improved tran-
scription accuracy on increasingly challenging types 
of read speech. Early SR efforts included both rule-
based and statistical approaches, but DARPA quickly 
abandoned an expensive handcrafted, rule-based 
system when the 1988 evaluation demonstrated the 
superiority of the less-expensive, more-accurate, and 
more-flexible statistical approaches.

Researchers first attacked small-vocabulary, narrow- 
domain read speech using a corpus of military- 
style sentences from a 1,000-word vocabulary with 
a bigram (that is, two-word) language model. After 
three years of research on this highly-artificial task,  
speaker-dependent systems (for which test speakers  
had laboriously trained acoustic models to their voices) 
achieved a WER of 1.8 percent; speaker-independent 
systems achieved a WER of 3.6 percent.

Researchers then moved on to speaker-independent,  
broad-domain read speech, specifically sentences 
from the Wall Street Journal with vocabulary sizes 
increasing from 5,000 words to 64,000 words. The 
black lines in figure 2 depict the WER reductions 
obtained with acoustic models trained on the voices 
of multiple speakers, none of whom was a test speaker. 
Subsequent programs dealt only with speaker- 
independent, unlimited vocabulary speech.

SUR Speech Understanding Research 1971–1976

Speaker-dependent read speech with 1,000-word vocabulary

SR Speech Recognition 1986–1994

Speaker-dependent read speech with 1,000-word vocabulary and highly restricted grammar

Speaker-independent read speech from Wall Street Journal sentences with 5K, 20K,  
and 64K vocabularies

SLS Spoken Language Systems 1989–1994

Speaker-independent, goal-directed spontaneous speech with unlimited vocabulary

— WHISPER 1990–1993

Speaker-independent conversational telephone speech

TRVS Text, Radio, Video, Speech 1996–2000

Broadcast news in Chinese and English

EARS Effective, Affordable, Reusable STT 2001–2004

Broadcast news and telephone conversations in Arabic, Chinese, and English

GALE Global Autonomous Language Exploitation 2005–2011

Broadcast news and talk shows in Arabic, Chinese, and English

Table 1. DARPA Programs that Advanced Automatic Transcription.
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SLS developed technology to automatically tran-
scribe goal-directed spontaneous speech; specifically, 
requests for information related to air travel planning 
that could be answered by a hypothetical Air Travel 
Information System, a forerunner to Apple’s Siri.

Participating sites collected training and test data 
via Wizard-of-Oz simulations. When a naïve user 
posed a question, unseen assistants would quickly 
transcribe the speech, post the transcript on the user’s 
screen (as if a computer had produced it), query an 
appropriate database, and then display the response. 
The simulation was quite effective, fooling even some 
technical managers. As spontaneous speech transcrip-
tion technology improved, hidden human tran-
scribers were no longer needed; and the automatically 
transcribed speech allowed data to be collected more 
rapidly and encouraged users to speak more briefly. 
The green line in figure 2 reflects the rapid reduction 
of WER achieved on the resulting test data sets.

WHISPER was designed to develop speaker- and 
topic-spotting technology for conversational tele-
phone speech. To fuel that research, Texas Instru-
ments created the first version of the SWITCHBOARD 
corpus containing thousands of telephone conversa-
tions between strangers labeled by speaker and topic.

WHISPER unexpectedly inaugurated the govern-
ment’s work on conversational speech transcription — 
all because one site decided to attack topic spotting 
by creating automatic transcription technology for 
conversational speech. Although the resulting tran-
scripts were full of errors (WER near 100%), they 

proved more effective than acoustic template-based 
word spotting for identifying topics. Inspired by this 
discovery, the National Security Agency started spon-
soring research on conversational speech transcrip-
tion technology. DARPA returned to the challenge 
eight years later in the Effective, Affordable, Reusable 
STT (EARS) program discussed below. The red lines in 
figure 2 depict WER reductions on various conversa-
tional speech corpora.

TRVS included DARPA’s first attempt to automat-
ically transcribe broadcast news. The solid blue line 
in figure 2 depicts WER declines for English; the 
dashed blue line, for Chinese.

EARS was a strong, systematic attempt to create fast, 
accurate transcription technology for broadcast news 
and telephone conversations in three major languages: 
Arabic, Chinese, and English. Researchers developed 
increasingly sophisticated probabilistic acoustic and 
language models, estimating parameters from what 
would become an order-of-magnitude-more training 
data. For broadcast news, the solid blue line in figure 1 
depicts WER declines for English sources; the dashed 
and dotted blue lines, for Arabic and Chinese sources. 
For telephone conversations, the solid red lines depict 
WER declines on various English corpora; the dashed 
and dotted red lines, for Arabic and Chinese.

In a span of just three years, EARS researchers 
slashed WERs in half for English — cutting them 
from 18.0 percent to 8.6 percent for broadcast news 
and from 27.8 percent to 12.4 percent for conver-
sational telephone speech. These numbers are from 

From DARPA Research to Commercial Applications

Several decades of DARPA spoken-language programs have helped industry advance AI and 
natural interaction in profound ways. Many new speech and language services from compa-
nies like Amazon, Apple, Google, IBM, Microsoft, and Nuance directly benefited from DARPA’s 
pioneering speech and language research.

I participated in DARPA’s spoken language research at Carnegie Mellon University before I 
joined Microsoft in 1993 to lead the newly formed Microsoft Speech Research and Development 
Group. Microsoft then licensed Carnegie Mellon University’s Sphinx-II speech technology, which 
I had helped to create, and which was mostly funded by DARPA. Several prominent Carnegie 
Mellon University speech and language researchers also joined my Microsoft team, and we built on 
DARPA HLT foundations to significantly advance the technology. In 2016, Microsoft became the first  
company to reach human parity in transcribing conversational speech on the SWITCHBOARD 
corpus.

As a result of capabilities first developed in DARPA HLT programs, Microsoft has been able to 
partner with others in industry and academia to deliver speech and language products and ser-
vices that help to remove language barriers and ease human–computer interaction. SR, machine 
translation (MT), and digital assistants have become widely available in many of Microsoft’s prod-
ucts, including the Xbox entertainment system, productivity applications such as Office Dictation 
and PowerPoint automatic captioning and transcription, personal assistants like Cortana and 
Microsoft Translator, and Azure Cognitive Services for developers. Other companies have also 
benefited directly from DARPA HLT research — for example, Apple’s Siri was originally developed 
as a spin-off from the DARPA Cognitive Assistant that Learns and Organizes program.

– Xuedong Huang
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Go/No-Go evaluations on stable, set-aside test sets, 
not the everchanging test sets used for figure 2.

To produce more rapidly readable transcripts, EARS 
also worked on metadata extraction techniques — to 
detect disfluencies, sentence boundaries, and who 
spoke when in multiparty speech — and measured 
impact via readability speed experiments.

Although EARS was meeting increasingly chal-
lenging Go/No-Go criteria for speed and accuracy 
and was scheduled to run for a total of five years, 
DARPA terminated it at the three-year mark to launch 
the GALE program described below. STT research on 
broadcast news continued within GALE, but research 
on telephone conversations ceased.

GALE created transcription engines to transcribe 
broadcast news and talk shows in Arabic, Chinese, 
and English. Researchers tailored those engines to 

optimize the output of downstream translation 
and distillation engines; they did not focus on, nor 
officially measure, WER reductions produced by the 
transcription engines.

Automatic Translation
During a span of 20 years, DARPA programs thor-
oughly revolutionized automatic translation. The first 
two programs highlighted in Table 2 addressed text-
to-text translation; the third added STT translation.

MT was DARPA’s first foray into translating naturally 
occurring text. DARPA funded three research groups, 
each pursuing a different technical approach: manually 
encoded transfer rules, statistical techniques informed 
by automatic transcription, and a combined linguistic 
and statistical approach. Deviating from the Common 
Task Method, DARPA permitted each group to focus 
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on a different source language. While the results were 
somewhat promising, it was not possible to com-
pare the effectiveness of the different approaches. 
Furthermore, slow, labor-intensive, manual evalu-
ations of translation accuracy — using techniques 
developed for grading human translators — proved 
inappropriate and greatly impeded progress.

Eight years later, TIDES launched a strong, sus-
tained effort to create technology for automatically 
translating Arabic and Chinese text to passable Eng-
lish. To fuel the research, the LDC amassed and anno-
tated substantial corpora of Arabic, Chinese, and 
English newswires, including parallel (Arabic-English  
and Chinese-English) data. TIDES researchers extended 
and substantially improved upon the statistical trans-
lation approaches that had shown promise during 
the MT program. DARPA adopted a crude automated 
method (BLEU) for evaluating translation accuracy. 
In the same way that WER helped transcription tech-
nology improve, BLEU helped translation technology 
advance — by allowing researchers to use error-based 
ML to rapidly improve their translation algorithms.

Because the meaning of a BLEU score (that is, 
the geometric average of n-word matches between 
a candidate translation and several good human 
reference translations) was difficult for laymen 
to comprehend, NIST also computed Percent-of- 
Human figures based on the ratio of a machine- 
translation BLEU score to a human-translation BLEU 
score.

Figure 3 is an example of how well TIDES turned 
Arabic text into increasingly comprehensible English 
text—figuratively, darkness into light. The 2004 
translation is imperfect, but gives English readers 
some understanding of the Arabic.

GALE pushed automatic translation further forward. 
Its text inputs were newswires and newsgroups; 
its speech inputs were broadcast news and talk 
shows; its source languages were Arabic and Chinese. 
Researchers jointly optimized GALE’s transcription and 
translation engines to maximize end-to-end (speech 
input to translated text output) accuracy.

Researchers continued to use BLEU internally 
to guide algorithmic improvements, but DARPA 

MT Machine Translation 1991–1993

Journalistic text from Spanish, French, and Japanese to English

TIDES Translingual Information Detection, Extraction and Summarization 2000–2004

Newswire from Arabic and Chinese to English

GALE Global Autonomous Language Exploitation 2005–2011

Newswire and newsgroups from Arabic and Chinese to English

Table 2. DARPA Programs that Advanced Automatic Translation.

EgyptAir Has Tomorrow,
Wednesday to Resume Its
Flights to Libya

Cairo, 4-6 (AFP) - said an
official at the Egyptian
Company for aviation company
today that EgyptAir may
resume as of tomorrow,
Wednesday flights to Libya
following the decision of the
Security Council to suspend
the embargo imposed on
Libya. 

Egypt Air May Resume its
Flights to Libya Tomorrow

Cairo, April 6 (AFP) - An Egypt
Air official announced, on
Tuesday, that Egypt Air will
resume its flights to Libya as of
tomorrow, Wednesday, after
the UN Security Council had
announced the suspension of
the embargo imposed on
Libya.

insistent  Wednesday may
recurred her trips to Libya
tomorrow for flying

Cairo 6-4  (AFP) - an official
announced today in the
Egyptian lines company for
flying  Tuesday is a company
"insistent  for flying" may
resumed a consideration of a
day Wednesday tomorrow her
trips to Libya of Security
Council decision trace
international the imposed ban
comment.

2004 Human2002Source

Figure 3. Advances in Translation Accuracy during TIDES.
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adopted a more natural measure of translation accu-
racy for GALE’s Go/No-Go evaluations. This involved 
having English-speaking editors revise system out-
puts as little as possible to make them contain the 
same information as gold-standard reference trans-
lations. The fewer distinct edits needed, the better.  
Figure 3 shows how rapidly translation errors declined 
on various types of Arabic data during GALE’s five 
phases (P1 ... P5). Progress on Chinese was similar, 
albeit slower.

Automatic Content Analysis
During a 25-year period, DARPA’s goals and funding 
revolutionized automatic content analysis, producing 
technology for detecting desired information in 
speech or text, extracting information to populate 
knowledge bases, and summarizing information in 
readable forms. Table 3 highlights the seminal pro-
grams and their corresponding focuses.

Natural Language Understanding began DARPA’s 
work on extracting facts from documents to populate 
databases. The research used brief Navy messages about 
shipboard equipment failures (that is, casualty reports, 
or CASREPs). To spur progress, the Naval Ocean Sys-
tems Center organized two Message Understanding 
Conferences: MUC-1 in 1987, and MUC-2 in 1989.

MUC-1 was an exploratory free-for-all, in which 
each participating group decided independently 
how to express the content of a set of sample mes-
sages, and there was no formal evaluation of the 
success of their efforts. For MUC-2, the organizers 
specified a data model in the form of a template 
with 10 slots; provided training data with correctly 
filled templates; and tested participants’ analyses of 
unseen test examples using recall and precision as 
quantitative performance measures.

WHISPER developed techniques for spotting spec-
ified speakers and topics in conversational telephone 
speech. It used the SWITCHBOARD corpus wherein 
no one spoke to the same person or discussed the 
same topic more than once. When WHISPER ended, 
SWITCHBOARD contained 2,438 two-way conver-
sations among 543 speakers on 70 topics. WHISPER 
was remarkably successful, correctly detecting spec-
ified speakers and topics at least 80 percent of the 
time with no more than three-percent false alarms 
for speakers and 10 percent for topics.

TIPSTER developed detection, extraction, and 
summarization capabilities for text. Unlike earlier 
information retrieval research that used small sets of  
documents from a few specialized sources, TIPSTER’s 
detection research assembled and distributed large, 

NLU Natural Language Understanding 1986–1989

Extraction of facts from Navy messages about equipment failures

— WHISPER 1990–1993

Spotting of speakers and topics in conversational telephone speech

— TIPSTER 1991–1998

Retrieval of desired documents from large, diverse collections. Extraction of facts about entities,  
relations, and events from news stories

Summarization of news stories

TRVS Text, Radio, Video, Speech 1996–2000

Detection and tracking of unforeseen topics (events) from newswire and automatically  
transcribed broadcast news in Chinese and English

TIDES Translingual Information Detection, Extraction and Summarization 2000–2004

Question answering and cross language retrieval plus TDT from newswire and automatically  
transcribed broadcast news in Arabic, Chinese, and English

Extraction of facts about names, entities, and relationships from Arabic, Chinese, and English  
newswires

Summarization of one or more news articles

GALE Global Autonomous Language Exploitation 2005–2011

Improved detection and extraction capabilities for formal and informal text (newswires  
and news groups) plus automatically transcribed speech (broadcast news and talk shows)  
in Arabic, Chinese, and English

Distillation engine to deliver (in English) precise information requested by English speakers  
(without redundancy) from those Arabic, Chinese, and English sources

Table 3. DARPA Programs that Advanced Automatic Content Analysis.
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diverse corpora of naturally occurring text — 
750,000 documents in 1992 alone. This was shortly 
after the appearance of the Web in 1991, but before 
the first generally available web browser in 1993, 
and well before the founding of Google in 1998; it 
was a time that digital documents generally had to be 
converted from proprietary typographical-engine for-
mats. When TIPSTER ended in 1998, it had provided 
researchers 4,550,453 documents from 38 sources.

TIPSTER addressed five types of detection — English 
routing/filtering, ad hoc English retrieval, high-precision  
retrieval, Chinese retrieval, and Spanish retrieval. To 
evaluate ad hoc retrieval, NIST provided a large set 
of documents and a set of carefully crafted queries. 
For each query, systems automatically scored all of the 
documents for relevance and submitted the results to 
NIST; analysts reviewed the highest ranked documents 
and made binary judgments about the relevance of 
each; and NIST then used those judgments to produce 
precision-recall graphs and to calculate mean average 
precision metrics.

To exchange information about technical approaches 
and evaluation results more broadly, NIST founded 
the annual Text Retrieval Evaluation Conference series. 
Now in its 28th year, the Text Retrieval Evaluation 
Conference has explored more than a hundred fun-
damental capabilities and leading-edge applications. 
Capabilities span detection, extraction, and sum-
marization, and are integrated with SR, MT, and the 
analysis of images and videos. Research inspired by 
these tasks and discussions has played a key role in 
nearly every aspect of modern research in AI.

TIPSTER’s extraction research focused on techniques 
for filling databases with structured information 
extracted from text. Systems had to analyze documents 
to tag textual mentions of named entities (for example, 
people, places, organizations, dates, times, etc.); find 
information about the entities, relations, and events; 
and enter that information in multislot templates. 
TIPSTER continued the MUCs, broadening the range 
of subject areas to include news stories about terrorist 
incidents (MUC-3 and MUC-4), corporate joint ven-
tures and microelectronic production (MUC-5), labor 
disputes and corporate management changes (MUC-
6), and rocket launches and airplane crashes (MUC-7).

TIPSTER’s summarization work sought to reduce 
the amount of text a person would have to read to 
understand a document. NIST started the Summari-
zation Analysis Conference series to discuss technical 
ap proaches and evaluation results.

TIPSTER transferred its most promising technolo-
gies to various government agencies and received a 
Hammer Award from Vice President Gore for signifi-
cant contributions toward reinventing government.

TRVS broke new ground by launching research on 
topic detection and tracking (TDT). Unlike tradi-
tional retrieval applications that seek specified infor-
mation, TDT tackled a new problem — detecting 
unforeseen (unspecified) events described in con-
tinuously arriving streams of speech and text, and 
tracking stories about them. The purpose was to 

alert analysts to the occurrence of new events and to 
group stories about them for further review.

TDT research, conducted on English and Chinese 
data, included story segmentation (automatically par-
titioning streams of text and audio into stories), topic 
detection (identifying events described in stories), 
and topic tracking (identifying other stories about the 
same event in the same or another language). To sup-
port the research and evaluation, the LDC assembled 
and annotated large, diverse data sets: 84,896 stories 
in English (from two news services plus five broadcast 
news sources), and 14,267 stories in Chinese (from 
two news services and one broadcast news source).

In TDT evaluations, NIST used miss-false alarm in 
lieu of precision-recall to emphasize the importance 
of minimizing errors and to avoid the confounding 
effects of target richness in different corpora. At 
each possible decision point, NIST calculated a nor-
malized cost from 0.000 (perfect) to 1.000 based on 
the miss-and-false-alarm probability at that decision 
point, and hypothesized costs for misses (10) and 
false alarms (1), plus the a priori probability for the  
target condition (for example, a story being on topic). 
Because the number of on-topic stories varied widely 
and topic difficulty was a major source of variability, 
NIST reported topic-weighted results (wherein each 
topic contributes equally to the overall averages) to 
improve the reliability of the performance measures. 
Figure 5 shows a detection error tradeoff graph.

TIDES built upon the successes of TIPSTER and 
TRVS by developing technology to help English 
speakers find and interpret needed information quickly 
and effectively regardless of language or medium. The 
inputs were a variety of news sources (newswires plus 
automatically transcribed radio and television news 
broadcasts) in three important and distinctly different 
languages (Arabic, Chinese, and English).

TIDES detection research produced operationally  
useful capabilities for simple question answering,  
cross language retrieval, audio retrieval, topic tracking,  
and topic clustering; these were fielded in various  
demonstration systems and delivered to military  
customers. TIDES also began groundbreaking research 
on high-accuracy retrieval. Extraction research moved 
from ad hoc, domain-specific tasks to domain-neutral 
tasks; produced highly effective name recognition 
technologies for all three languages; and expanded 
the number of relation types it could extract. Sum-
marization research sought to substantially reduce 
the number of words an analyst would have to read 
to understand the content of news articles (single 
articles or groups of articles), in which summaries 
could be fluent text or bullets.

Combining the above capabilities with automatic  
transcription technology, TIDES built real-time 
systems that enabled English-speaking operators to 
access and interpret information from various Arabic 
speech and text sources. TIDES used two operational 
prototypes in the 2004 Strong Angel exercise — a 
proxy for humanitarian operations across the civil- 
military boundary in Iraq, Afghanistan, and future 
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conflict zones — and transferred other interactive 
systems to the military. TIDES also conducted two 
surprise language experiments to determine how 
quickly HLT technologies could be ported to lan-
guages that might suddenly become operation-
ally important. Cebuano and Hindi were the two 
trial languages, very different linguistically, and 
in terms of data availability. Those experiments 
showed that strong multisite collaboration could 
produce somewhat useful capabilities in less than 
a month.

GALE sought to give users the precise information 
they requested, with citations and without redun-
dancy. Researchers pushed automatic content anal-
ysis further forward, significantly improving upon 
TIDES capabilities for entity and relation tagging, 
topic modeling, event detection, and cross-document  
entity linking. Researchers integrated those tech-
nologies in distillation engines that operated on 
the outputs of GALE’s transcription and translation 
engines.

When users expressed their information needs via 
English language template queries — such as, “Describe 
attacks in [location] giving location (as specific as 

possible), date, and number of dead and injured” — 
systems were expected to provide comprehensive 
responses containing all relevant information with-
out redundancy, note corroborating information and 
contradictions, and include all appropriate citations.

To evaluate distillation performance, British Aer-
ospace (BAE) Systems compared system outputs to 
those produced by time-limited humans, by looking 
at information nuggets relevant to the template  
queries. Systems found many more facts than humans 
but also produced a great number of false alarms. 
Combining miss and false-alarm information, BAE 
found that system scores exceeded human scores  
50 percent of the time.

This is a convenient place to conclude our dis-
cussion of the seminal programs that made HLT a 
reality and moved it far forward. The GALE program 
extended and integrated all three thrusts — producing 
systems with transcription, translation, and distil-
lation engines connected in series — transcription 
to convert speech to text, translation to convert 
Arabic and Chinese to English, and distillation — to 
provide the precise information requested by English- 
speaking analysts and decision makers, regardless of 
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source language (Arabic, Chinese, English), medium 
(speech or text), and genre (formal or informal). 
Unlike previous speech programs that focused on 
cutting WER or translation programs that raised 
BLEU scores, GALE focused on overall utility as 
judged by humans. Its Go/No-Go criteria were stated 
in terms of translation and distillation accuracy.

Additional Programs
In addition to the 10 seminal programs described 
above, other programs advanced HLT capabilities in 
various ways, including understanding spoken com-
mands in extreme noise, for example, inside tanks 
(SPINE); performing optical character recognition on 
handwritten and printed text and translating them 
into English text (MADCAT); performing speech 
activity detection, language identification, speaker 

identification, and word spotting in noisy and 
degraded signal environments (RATS); performing 
automatic translation of and information retrieval 
from, informal text (BOLT); performing two-way 
speech-to-speech translation using human-machine 
dialog for error correction and ambiguity resolution 
(TRANSTAC); creating knowledge bases from multi-
lingual text by consolidating information regarding 
entities, events, relations, and sentiments (DEFT); 
and creating capabilities for extracting entities and 
events from low resource languages (LORELEI)

Two new programs are now focusing on creating 
a semantic engine to automatically generate multi-
ple alternative interpretations of events, situations, 
or trends, based on a variety of unstructured mul-
timedia, multilingual sources that may be noisy, 
conflicting, or deceptive (AIDA), and developing a 
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semiautomated system that identifies and links tem-
porally sequenced complex events described in mul-
timedia input, identifying participants, subsidiary 
elements, and event types (KAIROS).

Other programs adapted and demonstrated HLT 
capabilities in various military applications.

Open Problems
Another generation’s worth of research remains to 
be done, and current DARPA programs are getting 
it started.

Technology
In technology, automatic transcription, translation, 
and content analysis must become more robust, able 
to perform well on ever more diverse and difficult 
types of speech and text. Systems must learn to set 
decision thresholds automatically and output trust-
able confidence figures. Methods must be devised to 
port HLT capabilities to new languages, problems, 
and domains, at low cost and with smaller amounts 
of manually annotated training data. New types of 
automatic content analysis must be defined and 
developed, including discourse and conversation 
analysis in both speech and text. Effective auto-
mated scoring methods are needed for all types of 
automatic content analysis. Better integration of HLT 
and image understanding technology with large-
scale knowledge bases and systems that can actively 
explore the physical world must be achieved.

True language understanding does not yet exist. 
It is a Holy Grail that should be pursued.

Applications
Important new HLT applications are being developed 
using current state-of-the-art tools. As researchers 
make progress on the challenges described above, we 
can expect to see widespread use of improved ver-
sions of applications that now exist in limited forms, 
as well as many new applications not yet imagined. 
Here are just two of these many opportunities: First, 
we expect many educational applications. These 
include areas where speech and language are the thing  
being taught, such as foreign-language learning and 
the many levels of writing instruction. More broadly, 
as conversational and user-modeling abilities improve, 
we will see intelligent tutoring systems applied perva-
sively to teach (and test) subjects from accounting to 
zoology. Second, there are enormous opportunities for 
automatic analysis and monitoring of the linguistic 
correlates of clinical categories such as Alzheimer’s dis-
ease, mood disorders, and schizophrenia. For hundreds 
of years, physicians have diagnosed neurocognitive 
health from the way that people talk. For many dec-
ades, these subjective evaluations have been reinforced 
by hand-calculated quantitative scores on neurocog-
nitive tasks with verbal responses. Over the past few 
years, researchers have begun to use speech technol-
ogy and ML to infer additional diagnostic information 
from recordings of such tasks and also from recordings 
of interviews, picture descriptions, and other interac-
tions that previously were analyzed only subjectively.

Summary
During several decades of research, DARPA HLT pro-
grams created enormously valuable core capabilities 
for automatic transcription, translation, and content 
analysis — changing science fiction to social fact.

DARPA created these game-changing capabilities 
by setting crisp, aggressive, quantitative technical 
objectives; soliciting innovative ideas for solving them; 
selecting strong multidisciplinary research teams; 
providing strong multiyear funding; exploiting large 
quantities of linguistic data; conducting objective per-
formance evaluations; and making course corrections 
based on those results, and iterating multiple times.

Out of this, our four key technical lessons emerged: 
learning is better than programming; global opti-
mization of gradient local decisions is crucial; top-
down and bottom-up knowledge must be combined; 
and metrics on shared benchmarks matter.

The Common Task Method (multiple parties sharing 
resources, competing, and collaborating to achieve a 
stated objective) was extremely powerful, efficient, 
and easy to administer.
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