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CHAPTER FOUR 

THE SYMMETRIC 
TIME-WARPING PROBLEM: 

FROM CONTINUOUS TO 
DISCRETE 

Joseph B. Kruskal and Mark Liberman 

I. INTRODUCTION 

A trajectory, as illustrated in Fig. 1, means a continuous function of time in 
multidim ensiona l space, i.e ., a time-labelled curve in multidim ensiona l space. 
Time-warping, as illustrated in Fig. 2, refers to comparison of trajectories, or to 
compa rison of sequences derived from them by time-samp ling, when eac h 
trajectory is subject not only to alteratio n by the usual additive random error but 
also to variatio ns in speed from one portion to another. (In some applicatio ns, it 
is necessary to permit other differences between the trajectorie s as well, such as 
deletion and insertion , but we touch on that only lightly.) Such variat ion in 
spee d appears concretely as compressio n and expa nsion with respect to the time 
ax is, and will be referred to as compress ion- expansio n. The chief purpo se of 
t ime-warping is to deal with such variation. The chief app licat ion has been to 
speec h processing, where compress ion-expansio n is of major importance. 

Time -warp ing is used in at least thre e ways . One is to discover the pattern 
of comp ression- expa nsion that connects two sequences . Another is to measure 
how different two sequences are in a way that is not sens itive to compress ion
expansion but is sens itive to other differences. A third use is in forming the 
we ighted "averag e" of two seq uence s. 

Time-warping of sequences is very similar in form and methodolo gy to the 
comparison of "natura lly discrete" seq uence s discusse d elsewhere in th is 
volume, such as the macromo lecules of molecular biology and the character 
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Figure 1 a. Trajectory. 
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Figure I b. Sequence derived from trajectory. 



strings of computer science, in which the corresponding source of variation is 
deletion and insertion of units. This similarity is based on the following 
correspondence: 

Compression-Expansion 

Compress 2 units into 1 

Expand l unit into 2 

More genera lly, 

Compress (k + 1) 

Deletion-Insertion 

Delete 1 unit 

Insert 1 unit 

adjacent units into l Delete k adjacent units 

Expand l unit into (k + 1) 
adjacent units - Insert k adjacent units 

It is, however, frequent ly over looked that the difference in meaning 
between compression-expansion and deletion - insertion leads to significantly 
different definitions of distance between sequenc es. We sha ll make the 
difference very clear below , and illustrate how to use both types of change at the 
same time when comparing sequences. 

In fields where time-warping is used, the basic objects of interest are 
generally continuous trajectories, so it is natural in concept, though impossible 
in practice, to compare the trajector ies directly. While th e conversion of 
trajectories to sequences by sampling circumvents the practical difficulty, many 
of the ideas of time-warping can be expres sed most naturally in a continuous 
setting. In this chapter we first develop continuous time-warping, and then 
sys tematically "d iscretize" it, i.e., formulate discrete ana logues to all concepts 
,and definitions involved. This appears to be the first paper in which continuous 
time-warping is formulated in a fully symmetr ic manner, and the first in which 
the discretization process is systematically examined and a variety of 
alternative discretizations spec ified. This approach provide s a full justification 
for some edge weights (such as ''t 1, !"), which have been widely used without 
a fully sat isfying rationa le. 

A method of sequence comparison is symmetric, in the sense used above, if 
compar ing a with b gives the "sa me" result as comparing b with a , that is, the 
distances are the same and the time-warpin g of b onto a is the inverse of the 
time-warping of a onto b. Although the methods of sequence comparison in 
speech reco gnition are often deliberately asymmetric, treating the "s tored 
template " utt eranc e differently from the utteranc e to be recognized, our 
development is almost entire ly limited to method s that are symmetric. There are 
several reasons for this . 
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Figure 2a. Intuitive idea of continuous time.warping. 

Figure lb. Intuitive idea of discrete time-warping. 

1. One purpose of this paper is to clarify the central difference between the 
comparison methods of molecular bi~logy and those of speech 
processing, i.e., the differences between what we now distinguish as 
deletion-insertion and compression-expansion. The question of sym
metry or asymmetry is not important for this purpose, and the 
symmetric approach is more convenient to work with. and familiar in 
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2. Another purpose of this paper is a proposed speech application for 
which symmetric comparison is desired, specifically, the comparison of 
related utterances so as to study timing variability of normal speech. 
The data may consist either of x-ray microbeam recordings of 
articulator motion (as described, e.g., in Fujimura (1981)), or conven
tional sound wave analyses as used in speech processing. 

3. The chief reason for asymmetric comparison in speech recognition lies 
in the the mild improvement obtained by distinguishing between the 
stored template and unidentified current utterance. Even in speech 
recognition, however, there are other uses for comparison in which the 
desirability of asymmetry is not so clear, e.g., combining of utterances 
to form an "average" template. Thus, insight into symmetric methods 
may perhaps be of value even for speech recognition. 

In Secs. 2 and 3 we formalize the notion of a time-warping as a "linking" 
that connects the time scales of the two trajectories or sequences. In the discrete 
case, the linking concept is similar to the "trace" concept used with deletion
insertion comparisons (see, for example, Chapter 1). In fact, a discrete linking is 
precisely analogous to a trace, and the differences between linking and trace 
reflect the differences between compression-expansion and deletion-insertion. 
In Secs. 4 and 5 we define the length of a linking, a:qd then define distance 
between two trajectories as the minimum possible length of any linking between 
them. There is quite a variety of different ways to discretize the concept of 
length, which lead to mildly different discrete concepts. We explore many of 
these, including some that have not previously been discussed. 

In Sec. 6 we explain the most important difference between compression
expansion and deletion-insertion, namely, the difference between the length of 
a linking and the length of a trace. Linking length does not use deletion
insertion costs as trace length does, only substitution costs. On the other hand, 
linking length uses another distinctive element called time-weights, which 
multiply the substitution costs. In Sec. 7 we explain how compression
expansion and deletion-insertion can be combined into a single potentially 
useful method, by incorporating both deletion-insertion costs and time-weights 
in the same comparison. 

In Sec. 8, we note that a time-warping between two trajectories may be · 
seriously misleading when the interval at which the trajectories are sampled is 
large in comparison to the differences between them, and we introduce a new 
method called interpolation time-warping to remedy this difficulty. In Secs. 9 
and 10, stimulated by the asymmetric definition ofRabiner and Wilpon (1979, 
1980), we give a symmetric defmition of a weighted average between two 
trajectories or two sequences. Averaging is useful in forming a single "typical" 
sequence that is intended to represent a set of several similar sequences. 

We note that when time-warping is applied, numerous related problems 
need to be dealt with that may not be part of the time-warping itself. These 
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problems include choice of distance function ( called w below) in the feature 
space, local constraints on the time-warping function, and finding where the 
trajectories begin and end ( finding where speech utterances begin and end is 
surprisingly difficult). The solutions to these problems depend strongly on the 
domain of application. This paper is devoted to the central time-warping 
concept itself, and does not deal with problems such as those mentioned. 

For information about methodology and the use of time-warping in 
recognition of isolated words, the reader may consult papers such as Itakura 
(1975), White (1978), Sakoe and Chiba (1978), Myers, Rabiner, and 
Rosenberg ( 1980), Rabiner, Rosenberg and Levinson ( 1978), and White and 
Neely (1976). For methodology and the use of time-warping in recognition of 
connected speech, see Chapter 5 and papers such as Bridle and Brown (1979), 
Rabiner and Schmidt (1980), and Myers and Rabiner (1981a, 1981b). In 
addition, a volume of reprints, Dixon and Martin (1979), contains many 
valuable papers in this field. For applications of time-warping to gas chromato
graphy, see Reiner et al. (1979, 1978, 1969). For applications to handwriting 
recognition and related topics, see Fujimoto et al. (1976), Burr (1979, 1980, 
1981), and Yasuhara and Oka (1977). 

2. TIME-WARPING IN THE CONTINUOUS CASE 

In speech processing, gas chromatography, bird song, and other potential 
applications of sequence comparison, the underlying objects of interest are 
basically continuous functions a(t), b(t), etc., of a continuous variable t, which 
is often time. Also, the values of the functions lie in a several-dimensional space 
which we shall call the feature space. Thus each object of interest is a 
continuous trajectory or curve through feature space, as shown in Fig. l(a), in 
which each point on the curve corresponds to a particular value of the variable 
t. For practical manipulation, these trajectories are ordinarily cqnverted into 
sequences by sampling the values oft, as shown in Fig. l(b). Geometrically, 
this corresponds to describing the trajectory by a series of points on it. 

By way of example, we mention that in speech processing, the dimension
ality of the feature space is often in the range from 6 to 15. The ith coordinate of 
a(t) might indicate the power present in a speech utterance in the ith frequency 
band at time t (using a short-time spectral analysis). Alternatively, it might 
indicate the ith linear predictor coefficient at time t. 

Conceptually, time-warping applies most directly to comparisons of 
continuous trajectories. It has seldom been discussed in this domain, however, 
because for practical computation it is always used with sequences. We start, 
however, by discussing time-warping and its uses in the continuous case, for the 
conceptual guidance this discussion provides in the discrete case. 

Two trajectories 



are said to be con nected by an [approx imate] continuous time-wa rping if they 
trave rse [approximately] the same curve in feature space in the same direction, 
though at possib ly very different rates; for example, a(11) may proceed slowly 
along an ear ly port ion of the curve and qu ickly along a late r portio n, while b(v) 
might do the reverse. 

Geometrica lly, the idea of a time-warp ing is that each po int in one 
trajectory corresponds to some specific poin t in the other. One way to visua lize 
th is is illustrated in Fig. 2(a), in wh ich corresponding points are connecte d by 
line segments. If a(u) corresponds to b(v), we say u is linked to v. T he 
correspondence between the trajectories is the centra l idea of time-warp ing. 

More formally, we say (see Fig. 3(a)) that a(u) and b(v) are connected by 
an [approximate] continuous time-wa,ping (u0 , v0 ) if u0(t) and v0(t) are str ictly 
increas ing functions defined for O ~ t ~ T such that 

a( uo(t)) = b (vo(/)) [or a( u0( t )) ~ b (v0(t))]. 

0--- --- --....L... - ---'--- - --- U 
u 

V 

O __ __ _._ ___ ..__ ________ T 

t 

Figur e 3a. Continuous time-warping. 
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Figure 3b. Discrete time-warping. 
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Some constraint is generally needed to ensure that the time-warping does not 
degenerate to some tiny part of the curves involved. For example, the constraint 
might be that 

u0(0) = 0, v0(0) = 0,

u0(T) = U, v0(T) = V, 

though a weaker constraint could also be used. The word "approximate" is 
frequently omitted even when the approximate sense is intended, and the word 
"continuous" is generally omitted since it is obvious from context. 

In this formulation the time-warping correspondence b�tween the two 
trajectories is mediated by linking the two time-scales u and v. If u = Uo( t) and 
v = v0(t), we shall say that u and v are linked by (u0, v0) at t. Thus, points in the 
....... -!. -.£.- •• � ... - . • . 'I .  t1 •• • .,.. ... • .• • . ..  41 
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2. Time-Warping in the Continuous Case

Figure 4. Arbitrariness of time scale. 

It is necessary to recognize that the scale on which the parameter t
is arbitrary, has no intrinsic meaning, and can be freely distorted. In par 
(see Fig. 4), suppose that f is any strictly increasing continuous functi 
which/(0) = 0, and lets = f(t), S = f(T). Let g be the inverse functi, 
(that is g(f(t)) = t, f(g(s)) = s), so that t = g(s), T= g(S). Define a 
time-warping (u1 , v1 ) by 

u 1 (s) = u0(g(s)), v 1 (s) = v0(g(s)). 

All we have done is distort the arbitrary scale for t into another arbitr� 
for s. The time-warping ( u 1 , "'.i) gives the same correspondence between t 
trajectories as ( u0, v0), since if u and v are linked by ( u0, v0) at t, then it i 
to verify that they are linked by (u1 , v1 ) at s = f(t). 

We shall call two time-warpings equivalent if they induce the same. 
(throughout the entire trajectories). We note without proof that an 
equivalent time-warpings must be related in the manner just describe 
think of equivalent time-warpings as essentially the same, and differing c 
external form, not in any substantive way. This view will have imI 
implications below . 

In its various applications, time-warping is used as a method t1 

ov.�rcome the variability among nominally identical trajectories. Concep 
we can think of a trajectory as composed of two aspects: One is the cm 
which we mean the points swept out; the other is the time pattern, by wh 
mean the rate at which the curve is followed. The time-warping we co1 
between two trajectories displays the difference between them in terms o 
aspects: u0 and v0 compare the time patterns, while the distance is a sm 

2 3 m 

2 3 

--~2--~3.,_ __ _._h-e-------~----H 
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Figure 4. Arbit rariness of time scale. 

It is necessary to recognize that the sca le on which the parameter t occurs 
is arbit rary, has no intrinsic meaning, and can be freely distorted. In particu lar 
(see F ig. 4), suppose that f is any strictly increasing co ntinuous funct ion for 
which f(O) = 0, and lets = J(t), S = f(1). Let g be the inverse function off 
(that is g(f( t)) = I, f(g(s)) = s), so that t = g(s), T = g(S). Define anothe r 
time-warping (u 1, vi) by 

v 1(s) = v0 (g(s) ) . 

All we have done is distort the arbitrary sca le fort into another arbitrary sca le 
for s. The time-warpi ng (u1, v1) gives the same correspondence between the two 
trajectories as ( uo, v0) , since if u and v are linked by (u0 , v0) at t, then it is easy 
to verify that they are linked by (u 1, v1) at s = f(t). 

We shall ca ll two time-warpings equivalent if they induc e the sa me linking 
(through out the entire trajectories). We note without proof that any two 
equivale nt time-warp ings must be related in the manner ju st descr ibed. We 
think of equivalent time -warpings as essent ially the sa me, and differing on ly in 
externa l form, not in any substantive way. Thi s view will have important 
implications below. 

In its various applications, time-warping is used as a method to help 
overcome the variability among nominally identical trajectories. Conceptua lly, 
we can think of a trajectory as composed of two aspects: One is the curve , by 
which we mean the point s swep t out; the other is the time pattern, by which we 
mean the rate at which the curve is followed. The time-warping we con struct 
between two trajectories display s the difference between them in term s of these 
aspects: u0 and v0 compare the time patterns, while the distance is a summary 
mea sure of how much the curves differ. 
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Note that the methods that are used to calculate a time-warping between 
two trajectories must frequently be applied when the trajectories _are, in fact, 
entirely different and unrelated, e.g., when comparing an observed trajectory 
with many stored trajectories in order to identify it. Thus, although the basic 
concept assumes the existence of an approximate time-warping, the methods for 
calculation must not rely too heavily on this assumption. 

Speech processing has generally rested, of course, on the basic assumption 
that two trajectories of the same word or phrase are connected by an 
approximate time-warping. · While this assumption is reasonable and has been 
the basis for a great deal of fruitful work, systematic violations are known to 
occur. For instance, more emphatic pronunciation generally produces not only 
an increase in duration, but also an "amplification" of the vocal gestures 
involved. This effect can be seen most clearly in articulatory data, as expansion 
of some portion of the curve, but formant trajectories also show it plainly. In the 
filter-bank or linear-prediction feature spaces, such phenomena are equally 
present, though harder to visualize. Obviously, in such a case the usual time
warping comparison will produce a distance measure that is "too large," 
because it does not allow for trajectory differences that leave the word or phrase 
unchanged. (Also, it is observed empirically that when "amplification" of a 
curve occurs, the usual procedures yield a time-warping that differs quite 
strongly from our intuitive notion of ~hat it should be.) Such problems are 
doubtless among the reasons that speech recognition has been such a 
challenging problem. ·.1 

3. TIME-WARPING IN THE DISCRETE CASE 

To work with the continuous trajectories in practice, one standard approach is 
to convert them to sequences of points in feature space by sampling ( see 
Fig. I (b) ). To convert a( u ), it is sampled at some suitable set of discrete values 
Ui, ••• , Um, and a(u) is represented by the sequence (a(ui), ... , a(um)), We 
shall use a;= a(u;) and a= a 1 ••• am, In a similar manner, b(v) is represented 
by its values at v1, ••• , vn, namely by b = b1 ••• bn = (b(vi), ... , b(vn)), 

It is also necessary to convert the time-warping concept from trajectories to 
sequences. This could be done in more than one way, but we follow the usual 
definition, which seems very plausible. Following the definition, we justify 
certain parts of it. As illustrated in Fig. 2(b) and 3(b ), two sequences 

and 

with entries in tlie feature space are said to be connected by an [approximate] 
discrete time-warping (i0, j 0 ) if i0(h) and j 0(h) are weakly increasing integer 
functions defined for 1 :Sh :SH satisfying a "continuity constraint" (see below) 
such that 



for all /z. Each value of h corresponds to a line in Fig. 2(b) that connects a point 
in one sequence to a point in the other. To avoid the possibility that the time
warping degenerates to a tiny part of the sequences, we can use the 
constraint 

i0(1) = 1, 

i0(H) = m, 

j 0( 1-) = 1, 

j 0 (H) = n, 

though a weaker constraint could also be used. The word "approximate" is 
frequent ly omitted, even where the approximate sense is intended , and the word 
"discrete" is generally omitted since it is obvious from context. 

The time-warping correspondence between the two sequences is mediated 
by linking what are in effect discrete time scales, i and j. If i = i0(h) and 
j = Mlz), we shall say that i andj are linked by (i 0 , j 0 ) at h. The points in the 
sequence correspond in the time-warping if their times are linked. 

Figure 5 illustrates another representation of a discrete time-warping that is 
particularly important in connection with practical computation. For a given 

n ~ 
~ 

~ 

3 

,I 

- ,.;/ 

1/ 
-2 

- / 

2 3 4 m 

Figure 5. Computational array. 
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time-warping (i0 , j 0), each h corresponds to one cell in the computational array, 
namely, to cell (i0(h),j 0(h)). If each such cell is indicated by a dot, and adjacent 
cells are connected by lines, the entire warping can be visualized as a path 
through the array. 

We describe two different continuity constraints and justify them below. 
Each description is in terms of the vector or step between adjacent points of the 
time-warping in Fig. 5, that is, in terms of (llio, ll1), where fl is defined by 
llic,(h) = io(h) - io(h - 1). The first and most commonly used continuity 
constraint (see Fig. 6(a)) is 

{ 

(1, 0) or 

(llio, tlj 0 ) = (1, 1) or 

(0, 1). 

We remark that the step ( 1, 0) indicates a time-compression from a to b that 
reduces the number of units by one: If there are k adjacent steps of this type, 
they constitute compression of k + 1 units · into one. (Readers accustomed to 
deletion-insertion comparison are reminded that this step does not correspond 
to a deletion. The difference between compression and deletion will be 
discussed later. In the present notation, a single deletion could be indicated by a 
step of(2, 1).) Similarly, the vector (0, 1) indicates a time expansion from a to b 
that increases the number of units by one. 

POS~BL~~s~s 

I , 
I , 
I ,, 

jt-~------~~,,._~~-+-~---t , 
I , 
I , , ,, 
t--- ---
POSITION AT h-1 

Figure 6a. First continuity constraint. 



A second continuity constraint (see Fig. 6(b)), which is used in Chapter 5 
by Hunt, Lennig, and Mermelstein and is due to Mermelstein, is 

{ 

(2, 0) or 

(6. i0 , 6.j 0 ) = ( 1, 1) or 

(0, 2). 

Under this constraint, only cells (i, j) for which i + j is even are used, since the 
other pairs are skipped over. Also, it is not hard to see that every time-warping 
uses exactly the same number of pairs (i, j) (that is, same value of H), in 
contrast to the first constraint. Still other continuity constraints have been used 
also, but we do not consider them here. 

Sometimes weights ( most often !, 1, !) are associated with the alternative 
steps of the first constraint, for use in evaluating the length of a time-warping 
When we discuss lengths of time-warping later on, weights will arise naturally of 
their own accord; this fact and the values of these weights are a topic of interest 
to us. 

j 

{POSSIBLE POSITIONS AT h 

I 

I 
I 
I 
I 
I 
I . 
I 

I , 
I ,~ 
I , 

~--------------
POSITION AT h-1 

Figure 6b. Second continuity constraint. 
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Now, however, we simply wish to explain the continuity constraints. In the 
continuous case, u0 and v0 are constrained by monotonicity constraints, and 
also by continuity conditions that insured that no part of either trajectory can be 
skipped, i.e., there is no insertion or deletion. The first continuity constraint is 
exactly what we need to insure monotonicity of i0 and j 0 and to avoid insertion 
and deletion. If we are willing to restrict the time-warping to points (i, j) for 
which i + j is even (i.e., squares of only one color on a checkerboard), then the 
second continuity constraint is obtained in a similar manner. While the 
restriction to even values of i + j appears to discard some fine-grain informa
tion, it reduces computation time by a factor of two, and its use is favored by 
Hunt, Lennig, and Mermelstein, partly because of the property that H is the 
same for all time-warpings. If the sampling rate for converting trajectories into 
sequences is increased by yl2, this would appear to balance out the loss of 
information effectively while restoring the computation time, .so the choice of 
continuity constraint should depend ori subtler considerations. 

To display a discrete time-warping pictorially, we can use a diagram like 
the one shown in Fig. 2(b), where each line corresponds to one value of h. If a; 
is connected to h consecutive terms bj, ... , bi+h-l, this indicates that a region 
of a( u) around a; corresponds in this time-warping to a region of b( v) around 
bj, ... , bi+h-l· Ifu 1, u2 , ••• and v1, v2 , ••• are points in time and are regularly 
spaced using the same interval for the ~; and the vi, this correspondence 
indicates that the changes in a(u) around time u; occur rapidly and time must be 
stretched to match the corresponding changes in b(v) over the interval from vi to 
vi+h-I, which occur slowly. Of course, if the multiple connections go the other 
way, then a similar interpretation holds in reverse. 

A diagram somewhat like Fig. 2(b) can be presented more simply: 

Discrete time-warping diagrams like this are very similar to trace diagrams ( see, 
e.g., Chapter 1 ). However, such diagrams for symmetric time-warping differ 
from trace diagrams in two ways. (These remarks do not fully apply to diagrams 
for asymmetric time-warping, which is frequently used in speech processing.) 

1. In a symmetric time-warping diagram, one term of a sequence may be 
connected to several terms of the other sequence, while in a trace 
diagram each term can be connected to at most one other term. 

2. In a symmetric time-warping diagram, every term is connected to at 
least one other term, while in a trace diagram not every term need have 
a connection (i.e., terms that are insertions or deletions). 
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~ 

' 

FORBIDDEN TWO- STEP PATTERNS 

PERMITTED TWO-STE P PATTERNS 

F igure 7. An additional constraint. 

Additiona l const ra ints on the time-warpin g are common in speec h 
resea rch. Charac teristica lly, they refer to the values of i0 andj 0 at three or more 
consecutive values of h. The simplest, least restr ict ive constraint of this type 
simply forbids an "N" -shaped configurati on in the time -warp ing diagram like 
those shown here: 

For bidd en { 
a a 

I~ 
b b 

a a 

VI 
b b 
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that is, if a term has multip le Jines, the terms at the other ends of these lines must 
not have multiple connections. Other ways of describing this constraint are 
shown in Fig. 7 . 

4. DISTANCE AND LENGTH IN THE CONTINUOUS CASE 

The basic idea of time -warping ·is that replications of nominally the same 
trajectory will trace out approximately the same curve, but with varying time 
patterns. To measure the extent to which two trajectories a(u) and b(v) deviate 
from having this ideal relationship , we will first define the length d(u0 , v0) of 
any given time-warping (u0 , v0 ) in a suitable way , as the distance between 
corresponding point s in the two trajectories pooled somehow over the entire 
trajectorie s. Of course d depend s on a(u) and b(v) as well as on u0 and v0 , but 
we omit this dependence from the notation, for simplicity. Once length is 
defined , then the distance is given by 

d(a(u) , b( v)) = min d(u 0 , v0 ) ; 
all (uo,vo) 

that is, the distance is the le~gth of the shorte st possible time-warping. 
To define the length of d(u 0 , v0) , we first need a way to measure how far 

apart corresponding point s a(u 0(t)) and b(v0(t)) are for a fixed t . We shall 
assume that a distance function w[a, b] su itabl e for this purp ose has been 
defined on the feature space. Thi s function could be simple Eu clidean distance 
o: weighted Euclidean distanc e, or a more complicated function in which th; 
distance is sensitive to position in the featur e space. 

_ To po~I this distance over the whole trajectory, the obvious definiti on for 
d( u0 , v0 ) might seem to be 

1T 1v[a( u0(t)) , b(vo(t))] dt. 

This d~finitio~, howe ver, is incorrect. Recall that we defined ti . . 
be equivalent if they induce the same link " b . me~warpmgs to 
we consider equivalent time- war . mg etw_een the tra_iectones, and that 
definiti on for which equivalent t· pmgs a~ essentially the same. We want a 
d fi . . ime-warpmgs ha ve the s I h . 

e m1t1on above however equival t t · . . ame engt . Usmg the 
I th ' ' en ime-wa rpmgs can res It . . . eng s. To see this suppose w u m quit e different 
( ) . . ' e generate another time-wa · . 
uo, Vo , as m Fig. 4, by using s = J{t) with f . . rpmg equivalent to 

suc h that f{O) = o and f{S) = T W . . . a_n mcre asmg continuous function 
b t ti ( . · ntmg the mtegral p II I 

u or U1' v1) mstead, and then transforming it bys =af{rat)e to hthe one above 
, we ave 

l s w[a(ui(s)) , b(v 1(s)) J ds = 1T ,v[a( u (t)) b 
o O , ( vo(t ))Jf'(t) dt. 
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This is exactly the same as the integral for (u0, v0) except for the factor f'(t), 
which can be virtually any positivejimction. Obviously , different choices off' 
yield different values for the integral, so this definition is not invar iant. 

Th e arbitrarine ss of the integra l has a precise geometrical interpretation: 
The integral runs along the two trajectorie s at an arbitrary rate that is 
determined by the arbitrary time scale on which ti s mea sured. Ifwe rush along 
the trajectories (thi s will be the case for ( u1, v1) if g'(s) is large , f'(t) small , and 
S small) , then the integr al will be small. If we go along the traj ectorie s slowly 
( corresponding to the rever se situation) , the integral will be large. Furthermore, 
even if the overall rate is the same for two time-warpings, we can still rush along 
the curve s where they are far apart and go slowly where they are close together , 
in order to get a small va lue, or use the reverse strategy to get a large value. 

Onc e the problem is stated, there is an obvious solution. Th e traj ectori es 
them selves have natural meaningful time sca les, and we should use these time 
scales to weight each infinitesimal portion of the integral by a weight that 
correspond s to how long the trajectorie s linger there. Specifically, suppo se u 
and v are linked by (u0 , v0) att. The trajectory a(u) spends time du= u0(t) dt in 
the infinite simal region around u, and the trajectory b(v) spend s time 
dv = Vo(f) dt around V . If We Were Willing to accept an asymmetric formulation, 
we could use either uo(t) or Vo(t) as the weighting function. Let us disrega rd the 
asymmetry for a moment , and consider the use of Uo(t). Jt gives the integr al 

l r w[a(u 0 (t)), b(v 0 ( t)]u [i(t) dt. 

To test for invariance , we generate (u 1, v1) in the same way as before, and 
consider its corresponding integral , 

l s w[a (u 1(s)), b(v 1(s ))] u ;(s) ds. 

Consider the new factor u \(s). We have 

d 
u\(s) = - uo(g(s)) = uo(g(s) )g'( s). 

ds 

N ow differentiatingf(g (s)) =s, 

f'(g(s)) · g '( s ) = 1, 
1 

g' (s) = f'(t) 

Ther efore if we transform by s= f(t) , the preceding integra l equals 
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1T Uo(t ) 1T 
0 

w[a( u0 (t)), b (v 0 (t))] · -- · f'(t) dt = 
0 

w[ · · ·] u0(t) dt. 
f'(t) 

This is the same as the integra l corre sponding to (u0 , v0), so the new definit ion 
of length has the desired invariance property. 

Use of u0(t) as the weighting function effective ly means that we run along 
the a(u) trajectory at the ra te set by its time sca le, and along the b(v) trajectory 
however the correspondence determines. Use of Vo(l) reverses the roles of the 
two trajectories. Either of these gives to the definition of length the invariance 
property , but neither one treats the two tr ajectories symmetrically. (This 
asymmetric appro ach, incidentall y, is used in much speec h-recog nition work, 
where the time sca le of the unkno wn utterance trajectory is used to form the 
distance.) 

To give a symm etric formulati on that is invar iant , we must use a weigh ting 
function that com bines uo(l) and Vo(t) in a symmetric way. The most obvious 
possibi lity is the average, (uo(t) + Vo(t))/2 (or alternat ively, the sum) . Thi s 
means th at we run along the trajectorie s at the average of the rat es set by their 
two time sca les. Other poss ibiliti es that provide both invariance and symme try 
include the geometric mean , (uo(t)vo(t)) 112, the rth power mean for any r, 
that is, 

and still more genera l types of mean va lue. The case r = 2 can be given an arc
length interpretation , and turns out , after man ipulation, to be the same as a 
formula from Myer s ( 1980), which is discu ssed below. 

Gene rali zing in anot her direction, a weighted combination of ucf,.t) and 
vff..t) with weights U and V (reca ll that U = u0(7), V = v0(7)), or 1/ U and 1/ V, 
or J( U) and/( V) for any functi on J, is also symmetric and invariant. Using 
weights I I U and I IV leads to an attrac tive weighting funct ion ( ucf.J)/ U + 
(vcf.J)/V). Of course , weights cou ld also be incorp orated into the general ized 
means as well. 

Lacking a convinc ing argument for any particul ar one of these formula
tions, we choose the ordin ary average merely for simplicity. Thu s for the 
remainder of this pape r, d(u0 , v0 ) is formed by minimizi ng the following length 
over (u0 , v0 ): 

1 T Uo(t) + Vo(t) 
d( uo, v0 ) = ctcr 

O 
w[a (uo(t)) , b(vo(t) ] 

2 
dt. 
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4.1 Comparison with Other Continuous Formulations 

In the many papers that apply time-warp ing to speec h processing, there have 
been very few discussions of the continuous time -warping problem. In published 
paper s, we note a brief discuss ion in Velichko and Za goruyko ( 1970 ), a brief 
mention in Sakoe and Chiba ( 1971) , and a discussion limited largely to the one
dimensional feature space in Levinson ( 1981 ). In addition, we note a more 
extensive discussion in an unpubli shed paper by Myers ( 1980 ). 

Sakoe and Chiba (1971) present the following integral (our notation) , 

lu w[a(u) , b(f(u )) ] du. 

where u is the time parameter for utteran ce a, and f(u) (which describes the 
time-warpin g) corresponds to v0(u01(u)) , in our notation. Their integral is 
essentially the same as our first correct (but asymmetric) integral given above, 
since the two integrals are connected by an element ary change of variables, 
u = u0(t ). The y propose minimizin g this integral by choi ce off. Althou gh their 
integral is not symmetric in the two utterances, they then sta te that minimization 
problems of this type can be "very effectively solved by dynam ic-programmin g 
technique as follows," and pro ceed to present a symmetric version of the 
discrete time-warpin g problem , but do not indicate how the discrete formul ation 
is deri ved from the continuous one. 

The discussion by Velichko and Za goruyko (1970) is harder to summ arize, 
because it is less precise ly stated . After developing a discrete version of time
warping, they state that " in the continuous approx imation, the sum is 
·subst ituted by the integra l" 

1 b(P)dP, 
( f) 

where the integral is taken along a curve in the (u, v)-plane (our notation), p 
appea rs to be arc length along the curve , and b( P) appears to be a measure of 
similarit y between a(u) and b(v) at point P on the curve . Presumably, b(P) is 
intend ed to be analogous to their discrete measure of similarity p2 defined 
shortly befor e. Th e curve, of course, describes the time -warping, which they 
refer to as a time normalizat ion . Th ey then argue for introduction (into the 
integral) of a weighting factor f(y) such as f(y) = cos(2y), where y is the angle 
betwee n the 45° line and the tangent to the curve at point P, thus yielding 

1 f(y)b(P) dP . 
( P) 
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They propose finding the curve that maximiz es this integral, subject only to the 
constraint that the curve denote a monotonic increa sing function, and describe 
this maximization as a variational problem. After this they " reformulate (their) 
problem for the discrete case," but give no details connecting the continuous 
and discrete formulations. 

The discussion by Levinson (1981) is largely subsumed by that within 
Appendix I of Myer s (1980), which we now discuss. Myer s presents the 
following integral (notation partly changed to ours): 

lu w[a(u) , b(f(u))] W(u , f(u), f (u)) du . 

Note that this is the same as Sakoe and Chiba 's integral, except for the 
introduction of the weighting function W. The use of a weighting factor of this 
form appears to be largely based on a fact introduced by Myers, namel y, that 
this integral fits within the framew ork of a much- studied problem in the calculus 
of variations . Myers introduces the solut ion from that field, which is a 
differential equation for the time-w~in g curve v = f(u) in the (u, v)_.Elane, and 
then proceed s to discuss choice of W. He drop s the dependence of W on u and 
f(u) "since all points in the [(u, v)] plane should be weighted equally," and 
propos es as one logica l choice for W the form 

W (f( u )) = j 1 + f(u)2, 

since W(f(u )) du then become s the differential of arc length along the time
warping curve . Thu s he obtains 

lu w[a(u) , b(f( u)) ] / 1 + f(u) 2 du. 

He point s out that this can be thought of as the line integral of w with respect to 
arc length over the time-warpin g curve ( and thus obtain s an integral very similar 
to that of Velichko and Zagoru yko, though he does not make the connection or 
cite their paper) . H e attemg!ed to find a numerical solution to the differential 
equation for his choice of W , but indicates that this turned out to be difficult. 
He does not make any deta iled connection between the continuous and discrete 
versions of the time-warping probl em. 

Myer' s integral turns out to be symmetric in the two utterance s a and b, as 
we can see from the arc-length formulation, although his definition is not 
phrased in a symmetric manner and he does not consider the matter of 
symmetry. Hi s integral above can easily be transformed, using the elementary 
change of variables u = u0(t) , into the symmetric form 
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1 T [ uo(t)2 + Vo(t)2 J 1/2 
w[a(u 0 (t)), b(v 0 (t)) ] 

2 
dt, 

which was one of the symmetric forms we described above. 

5. DISTANCE AND LENGTH IN THE DISCRETE CASE 

As in the continuous case, the distance between two sequences is defined as the 
minimum length of any time-warping between the two sequences . Thus the only 
question is how to form the length of a disc rete time-warping (i 0 , j 0 ) by analogy 
with the length of a continu ous time-warping. We sha ll exp lore several ways of 
making this analogy . In one approach, the infinitesima l intervals such as 
duo(t) = Uo(t) dt cor respond to interva ls from one samp ling point to another, 
such as [u;-i, u;J. In another approach, each infinitesimal interval corresponds 
to an interval that su rrounds one samp ling point, so that eac h u; is near the 
center of its interval. We shall exp lore severa l versions of the first approac h, 
and one version of the second approach. It is not clear whe ther or not the 
difference s among these versions have any substan tive importance , but in some 
cases they do have computationa l importance. Throughout this sect ion, we 
assume that seq uences a and b have m and n points, respect ively, and are drawn 
from trajectories a(u) and b(v) extending over the time interval s [O, U] and 
[O, VJ, respect ive ly. We sha ll somet imes assume that the sampling times 
u1, ••• , Um and v1, ••• , Vn are regularly and identically spaced, i.e., tha t 
U; - U;-i =rand vj - vj - J = r for all i andj. 

We start with the first approach. For the time being , we assume that 
um = U and we introduce nonsampling points u0 = 0 and v0 = 0, so that the 
first and last intervals for a(u) are [u0 = 0, uiJ and [um-t, um= U], and 
simi larl y for b(v) . To form the ana logy, we use the following correspondence for 
a(u) , and extend it in the obvious way to b(v): 

dt 

[u - du, u] 

d uift) = u o(t ) dt 

1 T [ ..• ] Uo(t) dt 

l =h-(h- 1) 

[u;0c1,-1), U;0c,,>1 

.6.u,o<"> = u,o(h) - U;o(h - IJ 
H 

L. [ ... ] t. u,o(h) 
/, = ! 

(As a check on the validity of the correspondence , we can apply both th e 
integral and the summation to the function that is identically equal to 1. We 
obtain u0(T) - u0(0) = U for the integral and um - u0 = U for the sum.) To 
comp lete the ana logy, we dec ide that in the summa tion we will evalua te the 
summand [ ... ] using the sampl ing point at the end rather than the beginning of 
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its interval , i.e. , we will use u = u;o<h> rather than u = ui o(h-IJ in connection with 
the hth term of the summation. (The opposite decision would not be tenab le, 
because it would involve use of u = u0 when h = 1, which is not a samplin g 
point.) Then letting 

the definiti on above for length of a continuous time-warping corresponds to the 
following, which is our first definition for length of a discrete time-warping: 

H 

d (io, j o) = L 
h= l 

w(h) [ L'.uio("l + L'. vio(hl ] 

2 

If two sequen ces are regularly spaced, as described above , then t.u i(hl = 
r L'. io(h) and the preceding formula reduces to 

H w(h) [L'.io(h) + L'.'.jo(h)] 
d( i0 , j 0 ) = r I 

h= l 2 

For the first continuity constraint, the express ion in brackets is 1 or 2 or 1 
depending on which case occurs, so 

H 

d(i 0 , j 0) = r I z,,w(h), 
h = I 

wher e z,, = 1 for a diagonal step and ~ for a vertica l or horizo ntal step. We sha ll 
refer to the z,, as the time weights, though , properly speaking, it is the products 
z,,r that are the true time weights. The va lues ofz,, are illustrated for this formula 
in Case 1 of Fig. 8. Thi s length formula is essentially identical to one that is well 
known in the time-warping literature, and the minimum -length time-warping can 
be calculated by standard method s. In particular, if Du= distance = minimum 
length between the incomplete sequences a1 ••• a,. and b1 ••• bj, then using 
recursion to find the values of Du is the main part of the calculation. Using 

the nece ssa ry recurrence equation is 

{

D ;- 1,i + 
Du= min D,._ 1• j- I + 

D; ,j- 1 + 

~ rw(i, J), 
TW(i, )), 

~ rw(i, J) , 

which can be evaluated recur sively using the computat ional array of Fig. 5. 
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TIME-WARPING 

C3 C4 C5 as C7 

~I~ 
b3 

Cs C1g 
I I 
b8 b9 

FIRST CONTINUITY CONSTRAINT SECOND CONTINUITY CONSTRAINT 

b5 b5 ll 
b4 b4 

' I 
b3 b3 

I 

/ 

b2 b2 I 
b1 b1 I 

a1 a2 a3 a4 a5 as a7 a8 ag a1 a2 a3 a4 a5 as a7 a8 ag 

TIME-WEIGHTS 
FIRST APPROACH 

CASE CASE 1 1 1 1 1 1 1 1 1 CD ® 2 2 2 2 
CASE CASE 1 

1 3 1 1 1 3 1 1 
1·2 4 2 2 2 4 1·2 @ @ 

CASE 
@ 

1 1 
1 

~·2 1 

1 1 I·-2 

. SECOND APPROACH 

1 1 1 1 1 

1 1 1 1 1 
1·2 

1 1 0 f 1 1 1 
2 2 1·-2 

C®E I 1 j 1 h%1 ~,~,~IR>I 1 j 1 j ENTRY IS zh OR 
z h · (END-EFFECT MULTIPLIER) 

Figure 8. Illu stration of time-weight s for a given time-warping. 

For the second continuity constraint, the express ion in brackets is always 
2, so the time weig hts zh = I always (see Case 2 of F ig. 8) . Us ing this yields 

H 

d(io, jo) = r 2, w(h). 
lz=I 

Thi s length formula is the same as that used in Chapter 5 by Hunt, Lennig, and 
Mermelstein. The minimization can eas ily be carr ied out by methods virtua lly 
identical to the standard ones, as illustrated in that chapter ( of course, only half 
of the cells of the comp ut ationa l array are used, namely cells (i, }) with i + j 
even). In particular , the recur rence equation is 
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{ 

D;- 2, 1 + rw(i, j), 
D iJ = min D;- 1, 1- 1 + nv(~, 1:), 

D;, J-i + rw(z, J). 

Suppose we proceed as above, but with one change. In stead of using w(h), 
which means evaluating the summand at the end of the interval , supp ose we use 
[w(h - 1) + w(h)] / 2, which means evaluating at both ends and talcing the 
average. This requires a slight change of convention to avoid evaluating · the 
summand at Uo and v0 , which are not sampling points. Thu s we set u1 = v1 = 0 
( so the first interval for a( u) is [ u 1, u2 ]). This leads to 

_. . ~ w(h - 1) + w(h) ~ i0 (h) + ~j 0 (h) 
d(10 , Jo) = r L, · 

h = 2 2 2 

For the first continuity constraint, we find that 

{ 

H - J } 
d( i0 ,j 0 )=r ! z 1w(l)+ L zhw(h)+!z1-1w(H) , 

h-2 

where the time weights 

z,, = ! or j or 1 

(see Case 3 of Fig. 8) depending on the steps which end with h and start with h 
(with a special rule for h = 1 and h = H). Again , the minimization can be 
carried out as usual. An appropriate equation is 

D; - 1,1 + h [w(i - 1, j) + w(i, j)J, 

D iJ = min D;-i ,J- i + !r [w{i- 1, j-1) + w(i, j)J, 

D;, 1-1 + !r [w(i, j - 1) + w(i, j)]. 

For the se cond cont inuity constraint, we find that 

{ 

H -1 } 
d( io, fo)= r ! w(l) + L w(lz)+ ! w(H) , 

h - 2 

which is remini scent of the trapezoid ru le for integration. Here zh = 1 always 
(see Ca se 4 of F ig. 8). A recurrence equation for the minimi za tion is 
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D ;-2,i + !r[w(i - 2 , j) + w(i, j) ], 

Du = min D ;-u-i + !r[w(i- 1, j- 1) + w(i, j)), 

D;, j-2 + !r[w(i, j - 2) + w(i, j) ] . 

As an interesting side note, when using the seco nd cont inuity constra int it is 
possible to use w(h -!) in place of [w(h - 1) + w(h)]/ 2 for a vert ica l or 
horizontal step, because such a step moves two places along one of the 
sequence s. Using suc h evaluation where poss ible leads to st ill another length 
formu la, which we omit (but see Ca se 5 of Fi g. 8), and the following recurrence 
equation: 

D; -2,i + r w(i - 1 , j), 

Du = min D;- 1, j- i + ~r [w(i - 1, j - 1) + w(i, j) ] 

D;, j-2 + rw(i, j- 1 ). 

Consider the secon d approac h to formi ng the interva ls. We assume that 
seque nces a and b were formed by dividing the trajectories into m and n pieces 
lasting time r each and placing a sample point centra lly in eac h interva l. Th en 
the definition of length for a cont inuous t ime-warping correspo nds to 

If 

d( io, j o) = L, w(h)z hr 
h = I 

if we choose zhr analogous to (uo(t)dt + v0(t)dt) / 2. Now u0(t)dt indicates t ime 
spent in traj ectory a(u), and similarl y for v0(t)dt. Thu sz,.r should be the average 
of the t ime spent correspo nding to h in the sequence a and the time spent 
correspo nding to h in sequence b. One way to give this specific meaning relies 
on the constraint (see above) forbidding the presence of an "N'-s haped 
configuration in the discrete time-warping diagram. With this constraint , the 
diagram divides naturall y into connected compone nt groups, which are of three 
types (and see Case 6 of Figure 8): 

i) A single a; joined to a single bi. This group contains one value of h, and it 
corre spond s to time r in each sequence, so the ave rage is r and we set 
Z1, = 1. 
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ii) A single a; joined to k terms from b (with k ;; 2). This gr?up co~tains k 
values of h. It corresponds to timer in the a sequence, _and to time kr m the b 
sequence. Taking the average, and dividing the amount of time evenly into k 
parts, we get r(k + l)/2k , so we set Z1z = (k + l) /2k for each of the k time
weights in the group. 
iii) A single b

1 
joined to k terms from a (with k ;; 2). In a similar manner , we 

find that Z1z = (k + l) / 2k for each of the k time-weights in the group. 

(Note that if we drop the requirem ent k ~ 2, then the latter two cases are 
consistent with the first one.) The recurrence equation for this definition of 
length is computationally slower than the recurrence equations above: 

D;1 = min D ;- 1, 1- 1 + d(i, j). 

[ 
jl + 1 ~ 

D ;- 1,J - Ji + r-21·1 L Jz=l 

w(i + 1 - i2, j) J , 

6. HOW COMPRESSION-EXPANSION DIFFERS FROM 
DELETION-INSERTION 

We have already noted one difference between compression-expansion and 
deletion-insertion in Sec. 3, when . we contrasted the concepts of linking and 
trace . There is, however, a more· important difference. 

Consider the following bit from a time-warping diagram, and a very similar 
bit from a trace diagram: 

and 

Time-warping Trace 

The former expands a1 to match b1b8b9 ; the latter inserts b8 and b9 • By 
redescribing compression-expansion systematically in · this manner, it is 
converted into deletion- insertion, and the time-warping problem can be thought 
of as the deletion-ins ertion problem. It is through this relationship that the two 
sequence-comparison problems have often been considered the same. 
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Despite this convers ion, the problems are not the same . The difference 
between expansio n and insertion lies in the costs that we wish to ass ign to these 
operations. In the trace, the cost assigned to the subst itution of a 7 by b7 is 
treated very differently from the cost of the insertions of b8 and b9 • Th e cost of 
the subst itution will be sma ll if b7 equal s or resembles a7 , and will be larger 
otherwise. By contrast, there is no reason for the weight of the insertions to be 
sma ll if b8 or b9 equa ls or resembles a 7 ; nor is there even any reaso n to select a1 
for the comparison over, say, a8 • The ultimate reason for this treatme nt of the 
costs is the basic physica l processes we have in mind, namel y, subst itut ion or 
modification of a7 to yield b7 , but insertio n of a new element rather than 
modification of an existing one to yield b8 and b9 • 

On the other hand, in time-warp ing the costs ass igned to eac h of the three 
compar isons ( a 7 with each of b7 , b8 , b9 ) are all treated in sim ilar or identical 
fashion, and for each of them the cost should be smaller if b1 equals or resembles 
a1 • Th e ultimat e reason for this treatment of the weights is again the basic 
physical process we have in mind, namel y, that the trajectory moves more 
slowly through the region arou nd a1 on the second replication, so this region is 
represented by three point s instead of one, and the difference between a7 and b1 
is due to additive random error . 

7. COMBINING D ELE TION-INS ERTI ON AND 
COMPRESSION-EXPANSION IN A SINGLE METHOD 

One problem in applying time-warping to speec h processing is that speech 
utterances may differ not only by time-distortion and additive ran dom error but 
also by interpolated or deleted sounds. Thi s can happen for a variety of reaso ns: 
extraneous sound s from the ambient environment ( door sla mming, footsteps , 
etc.), speaker -generated nonspeech sounds (lip smacks, coughs, breath noise s, 
etc.) , and more or less full pronunciation of a word (the dictionary pronuncia
tion of "probably" may be reduced to " prob ' ly" or even "pro' lly," the 
dictionary pronunc iation "offen" may be expanded to the spelling pronuncia
tion "often," etc.). One step towards dealing with such add itional difficulties is 
to perform the comparison in a way that allows for deleti on- insertion as well as 
compression -e xpansion. (In the case of an extraneo us sound that does not 
delay the norma l speec h but merely concea ls a bit of it, delet ion-in sertio n 
pe rmits the concealed bit to be deleted and the extraneous sound to be inserted , 
which is a more rea list ic and perhaps mor e desirable explanat ion than that 
permitt ed by additive random error.) Although this appears not to have been 
done before, it can be done in a simple and computationally trac tab le manner . 
Of cour se, there are even more alternat ive vers ions in this case than there are 
whe n only compression-expansion is permitted, but we restrict our discus sion 
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here. While these simple vers ions may not in themselves be adequate to handle 
the kind of difficulties referred to, they do indicate one approach to dea ling with 
them. A more sophist icated approach is briefly mentione d. 

The time warping is defined by the function s io( h) and M h) as before, and 
we use the first continuity constraint , 

( 1, 0) 
( 1, 1) 
(0 , 1 ), 

or 
or 

(where ~i 0(h) = i0(h) - i0(h - 1)) , but the case (1, 0) can refer either to 
compression as before or , instead, to deletion of ai o(hl; likewise, the case (0, 1) 
can refer either to expansion or to insertion of bio(h)· We introduce deletion 
and insertion weights wd01[a;] and wins[bj] in addition to the subst itution weights 
w[a;, bj]. We think of these as weights per unit t im e, so tha t the cost for a dele
tion of a; over an interval of r time units is r wd01[a;]. 

The simplest recurrence that can be used is 

D ;- 1,j + !nv [ a;, bj ], 

D ;- 1,j + rwde1[a;], 

D ij = min D ;- 1,j-1 + nv[a; , b1], 

D ;, J- 1 + rwins[bj], 

D ;, j -1 + !rw[a ;, bj ]. 

However, the ju stification for time weights of 1 for compression and expans ion 
steps does not seem va lid if such a step immediately follows a deletion or an 
insertion step. Fo r that matter, it is probab ly more realistic to forbid a 
compre ssion or expansion step immediate ly following a deletion or insertion 
step, and doing so impro ves the time-reversa l symmetry of the linking concept. 
If we choose to do this, two coupled recurrences may be used . LetD V ("di" for 
deletion - inse1tion) be the length of the shortest poss ible time-warping between 
a 1 ... a; and b1 ••• bj that ends with a deletion or an insert ion, and let d'IJ ("o " 
for other) be the length of the best possible time-warp ing that ends in some other 
step . Then 

D di= min f 
I) l 

min (D1 '...1, j, D7- 1, J + 

· (D di no ) mm ; . j- I, ;, 1- 1 + 
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d · (D di D 0 ) gives the distance between a 
are the desired recurrence s, an mm ,,,,, , '"" 

and b. 
It is pos sible to extend the se versions in a 1;1uch mo~e general approach t?at 

offers the possibility of considerab le computational savmg, though we me~ti.on 
this only briefly. By making the template utterance a netw~rk and generalm~g 
the compari son problem as described in the section on Directed Network s m 
Chapter 10, we can treat normal speec h-sound deletion-insertion ( e.g. , 
" probably" to "prob' ly" ) as an alternative path in a network , rather than as a 
long series of d~letion s or insertion s of individual sequence el~me~ts. ~ne 
computation al advantage of this comes from the fact that deletton -msertion 
need not be considered as a possibility at every element in the sequence (which 
is, in any case, unreali stic for speech sound s) , but only at a few specified places. 
It is still feasible and perhap s helpful to permit arbitrary deletion - insertion to 
handle extraneous sound s when using this network approach , becau se the 
weights used for the two different types of deletion - insertion may be quite 
differen t. We omit a more concrete desc ription , since it would take us too far 

afield. 

8. INTERPOLATION BETWEEN THE SAMPLING POINTS 

The sampling procedure that converts trajectorie s a(u) and b(v) into sequence s 
a= a 1 ••• am and b = b2 •• • b,, can sometimes cause a problem when the 
curve s swept out by the trajectorie s are very close together . (This problem has 
been encountered in x-ray pellet-tracking measurements of tongue and jaw 
movement s during speech.) Suppo se, as in Fig . 9, that the distance from one 
curve to the other in some region is small compared to the typica l distances 
between successive sampling points (such as a; to a ;+1 , and bj to bj+i) in the 
same region. If the sampling in the two trajecto ries happens by chance to be 
nearly in pha se, as in Fig. 9(a) , then the optimum time-warping between the 
sequence s may give a satisfactory description of the relationship between the 
two und erlying trajectories . If , however, the sampling happen s to be substan
tially ~ut of phase, as in Fig. 9(b) or Fig . 9(c), then the values like w[a;, bj] that 
enter mto the length of the time-warping are much larger than the distance 
betw_ee~ ~he curves. In tl:i.s case, the discrete time-warping gives an unduly 
pess1m1st1c result. In add1tlon, the corre sponden ce between the trajecto ries is 
subst antially less accurate than is possible by more sophi sticated ana lysis of the 
same data . 
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(0) (b) ( C) 

Figure 9. Close trajectories with sa mpling in or out of phase. 

To overcome these problems , we have devised a new type of discrete time
warp ing, which we call interpolation time-wa,ping. (A very different meth od 
for a somew hat similar purpose may be found in Burr ( 1979).) It makes use of 
two polygonal paths in feature space : the a-path that connects the a; in order, 
and the b-path that connects the b1 in order. Each a; is mat ched not to some b1 
but instea d to some point on the b-path , and each b1 is matched to some point on 
the a-path. _ 

To describe an interpolation time-warping , we can use a diagram like 
F ig. IO(a), whose mean ing is indicated by Fig. lO(b ). Each r(h) is a number 
between O and I, and the notat ion ( a;, r) indicate s an interpolation point on the 
segment from a; to a;+i. Specifically , (a;, r) is the point that is r of the way from 
a; to a;+ 1 , that is, 

(a;, r) = def ( 1 - r)a; + ra ;+i · 

Diagram 10( a) sho ws that a 1 is matched to the interpolati on point (b1 , r(l)) 
between b1 and b2 , and that b2 is match ed to an interpolation point between a 1 
and a2 , etc. If the samp ling rate is the same in the two trajectories, sampling 
points and interpol ation points will tend to altern ate along each row of the 
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[ a, (a 1 , r ( 2 )) a2 (a2, r(4)) ( a2, r( 5)) a3 ] ( b I , r( 1)) b2 (b 2, r(3)) b3 b4 (b 4 , r(6 )) ... 

(a ) 

01 02 03 

• D ! t=J i-- • --
b1 b2 b3 b4 

( b) 

Fig ur e IO. Interpolati on time-warping. 

diagram, bu t alternation need not occur , as illustrated by adjacent sampling 
po ints b3 and b4 , which are both ma tched to interpolation points in the same 

segment. 
More formally, an interpolation time-warping between a= a 1 • • • a111 and 

b = b1 ••• b,, con sists of functions lo(h), J0(h), io(h), Mh), and r(h). Eac h of 
them is defined for lz = I to H , wher e H = m + n - 2. F or each h, either 

i) I0(h) is the sampling point a;o(h) and J0(h) is the interpolation point (bfo(h), 

r(h)), or 
ii) lo(h) is the interpolation point (a;

0
c11J, r( h)) and J0(h) is the samplin g point 

bio(h)· 

The functions 10 and i0 are required to sat isfy the following continuit y 
constra int, and J0 and j 0 are required to sat isfy a similar one. 

a) Ifl 0(/z) and 10(/z + I ) are both sa mpling point s, then they are adjacent in 
a, tha t is , i0(/z) + I= i0(h + 1). 

b) If 10( h) is a samp ling point and 10(h + 1) is an interpo latio n point , then 
the samp ling point is the beginning point of the segment containing the 
interp olation po int, that is, i0(/z) = i0(h + 1). 

c) Ifl 0(/z) is an interpolation point and 10(h + 1) is a sam pling point, th en 
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the line segment containing the interpolation point ends at the samp ling 
point, that is, i0(h) + 1 = io(h + 1). 

d) If I
0
(h) and 10(h + 1) are both interpolation points , they belon g to the 

same line segment, that is, i0(h) = i0 (h + I). 

To insure that the time-warping covers the entire sequences, we can use the 

following constraint: 

i0 ( 1) = MI)= I 

and 

{ 
i0 (H) = m and j 0(H) = n - l , 

i0 (H) = m - 1, and j 0(H) = n, 

if 10 (H) is a sampling point, 

if J0(H) is a sampling point. 

If we assume that the sampling interval is the constant 2r for both 
trajector ies, then it is very simple to define length appropriate ly for an 
interpolation time-warping: 

H 

d(I 0 , J0 , i0 , j 0 , r) = -r L w[Io(h), J o(h)]. 
I, = I 

The reason this is appropriate is that every h can be considered to corre spond to 
time 2-r in the trajectory where a sampling point is used , and to time O in the 
trajectory 'Yhere an interpolation point is used, so h corresponds to the average, 
-r. Although generalizing the standa rd recursion to handle this case involves 
some novel features, the resulting recurrence equati on is quite simple and easy 
to calculate. Let Au be the set of incomplete interpolation time-warpin gs that 
start from the beginning of a and b, that is, io( I) = M 1) = 1, and th at end at (i , 
j), that is, i0(lz1as1) = i and jo(h1asi) = j. (Here lz1ast = i + j- 1.) In other words, 
the time-warpings in Au are incomplete because they end at (i , j), which mean s 
that a; is match ed to an interpolation point between b1 and b1+ 1, or b1 is mat ched 
to an interpolation point between a; and a;+ 1 . Let Du be the minimum length of 
any time-warping in Au. Then the recurr ence for Du is 

D u = min 
{ 

D ;- i , 1 + min -rw[a;, (b1, r)], 
O!ar!a I 

D;, 1_ 1+ min rw[(a;, r) , b1], 
O:.r!. t 

and the minimum length of any complete interpolation time-warp ing is given 

by 

-rw[a111, (b11_ 1,r)], 

d(a, b) = D 111- 1, 11- 1 + min 
{ 

min 
O!.r!. t 

oTr~~ -rw[(a111_ 1, r), b11]. 
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(Note the differences in subscript pattern between this formula . and the 
preceding one.) Each minimization over r corresponds to finding the point on a 
given line segment that is nearest to a given point, and this is easy to calculate. 
For example, the first minimization over r in the formula for Du corresponds to 
finding the point on the segment from bj to bj+l that is nearest to a;. To find it, 
project a; perpendicularly onto the complete line between bj and bj+l . If the 
project ion is between bj and bj+ 1 , it is the desired point. If the projection is 
beyond bj, then bj is the desired point, and if the projection is beyond bj+ 1 , then 
bj+ 1 is the desired point. In algebraic term s, this can be written as follows, 

r= 
(a; - bj) · (bj+l - bj) 

(bj+l - bj) . (bj+l - b)-) 

{ 

1, 

r= ~ ' 

ifr > 1, 

ifr < o , 

otherwise, r, 

where the dot indicates the scalar product of two vectors. 
We can generalize interpo lation time-warping s to permit insertion and 

deletion in a way that is appropriate for use in speec h processing ( e.g., to get a 
good comparison between a precise pronunciation of "twe nty" and the slurred 
pronunciation " twenny," by permitting deletion of " t"). The recurrence 
equation is straightforward, but the algorithm requires a three -dimen sional 
array and time proportional to n3 instead of n2

• 

9. AVERAGE OF TWO TRAJECTORIES 

It is sometimes useful to take the "ave rage" of severa l trajectories, as illustrated 
in Rabiner and Wilpon (1979, 1980). The prime application occurs in speech 
processing, where severa l utterances of a single word are combined into a single 
average utt era nce to provide a " template" for use in word recognition. Th e 
Rabiner-Wilpon method has the advantage of being relati vely simple, and of 
permitting a simp le extens ion to the average of many trajectories (with one of 
them playing a special maste r role). It treats the trajectories in an asymmetric 
manner, however, and in this paper we are interested in developing a fully 
symm etric method, for reasons described earlier. We will give a natural 
symmetric definition for the weighted average of two trajectories with respect to 
a given time-warping between them. Of course, the optimum time-warping 
would normally be used. In principle, our definition could be extended to 
averaging N traj ector ies, but such an exten sion would rest on a simultaneous 
time-warping of N trajectorie s. We do not follow this approach, in part because 
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of the great computa tion time such m ethods require. Instead , to combine N 
trajectorie s into a sing le average, N - 1 repetitions of the two-trajector y 
average may be used , each with respect to the opt imum time -w arping between 
the two trajectories involved. For examp le, var iou s pairs may be combined, 
then some of the resulting trajectorie s may be combined, eith er with each other 
or with origina l trajectorie s that have not yet been combined , and so on. When 
combining two trajector ies that represent k 1 and k 2 or iginal trajectorie s, 
respectively , presumably we would use weight s k 1/ (k 1 + k 2) and kif(k 1 + k 2). 

While the final average would not, unfortunately, be independent of the order of 
combina tion , it would probably not be very sensitive to the order , in reali stic 
applications. In ciden ta lly, the combining proces s described bears a strong 
relationship to wide ly used method s of cluste ring known as " pair-group" 
methods , and the rules used in clustering to determin e the order of combination 
are probably quite suit able for use here also . 

Now as sume we are given the trajector ies a(u) and b(v), and weightsp and 
q with p + q = 1, p ;;;; 0, q 2:: 0. Also assume that we are given a time-warping 
(u0 , v0) between the trajectories. Pre sum ably, this wou ld usually be the 
optimum time-warping, though the following discussion doe s not rely on that 
ass ump~ion. Suppose u and v are link ed, so that a(u) and b(v) are corresponding 
points in the two trajectorie s. The we ighted average of the se points is 

pa(u) + qb (v ). 

Obviou sly the weig hted-average traj ec tory should run along the curve formed 
by all such points. 

What ha s not been so clearly set forth in the literature is the time pattern 
that shou ld be used with thi s curve. We propose that the time assigned to the 
point shown above should be the weighted average of the two time s involved , u 
and v, that is, 

w = pu + qv 

is the time that should be assigned to the point shown above. (It may appear that 
the time pattern chosen for the average is not important , becau se the distan ces 
we use are deliberately chose n to be insensitive to time pattern . However , it is in 
fact important, for two rea sons . First, a time pattern is needed to use the 
procedures we discu ss . Second , other ways of using the average trajectory , not 
discuss ed in this chapter, are sensitive to time pattern.) 

Thi s can all be wrapped up int o one succinct definition, as follows. Th e 
weighted average c(w) of trajectories a(u) and b(v), with resp ect to the time
warping (u0 , v0) , using nonn egative weights p an·d q that sum to I , is defined 
by 
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c(w 0(t)) = pa(u 0(t)) + qb(v 0 (t)) 

where 
w0(t) = pu 0(t) + qv 0(t). 

If equivalent tim e-warpings (u0 , v0) and (u1, v1) between a(u) and b(v) are each 
used to form the average, then it -is easy to show that the two resulting average 

trajectorie s are the same. 

IO. AVERAGE OF TWO SEQUENCES 

In the previous section, a reason for averaging trajectori es was explained, but in 
practi ce, of cour se, it is sequences that are averaged. In this section, we define 
the average of two sequence s with respect to a time-warping. As above, there 
are many way s to make the analogy with the continuous definition , and we give 
two alternative definitions. One difference between our definition s and the 
earlier definition s due to Rabiner and Wilpon ( 1979 , 1980) is that we treat the 
two seq uence s in a fully symmetric manner. 

Supp ose that we are given two sequence s a = a 1 •• • am and b = b, ... b11 

with sampling times ll; andvj, and weightsp and q withp + q = l ,p ;;; 0, q ;;; 0. 
Al so assume that we are given a time-warping (i0 , j 0 ) between the sequences, 
where i0(h) andMh) are defined for h = I to H. Pre sumably, the optimum time
warp ing would normally be used, but the following discu ssion is valid for any 
time-warping. Supp ose i andj are linked by h (that is, i= io(h),j=Mh)), so 
that a; and bj are corresponding point s in the two sequence s. The weight ed 
average of these points is 

which corresponds to h. Let the corresponding sampling time be defined by 

Our first definition of the average sequence is simply c = c1 ••• cH. 
If a and b were both formed by sampling at constant time intervals r, then 

we might want the average to have the same property. Our seco nd definition 
achieves this, though there are many alternativ e vers ions of it, and we shall not 
spell out the detail s for any one of them. Fir st we put a polygonal path ( or more 
generally, a spline) through the points ch. We label the point s with wh, and 
interpolate along the path to find point s at the appropriate sampling times. The 
point s yielded by this proce ss constitute our second definition for the 
average. 
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