
INTRODUCTION

As a by-product of networked digital computing, large and diverse digital samples of speech
are becoming easier to collect and to manage and increasingly large and diverse samples of
“found data” are available with almost no work at all. As a result speech data collection is no
longer the limiting factor that it once was; rather, speech scientists are now often limited by the
volume of human labor involved in making acoustic and articulatory measurements, even using
modern interactive computer programs. It’s easy to find or create speech datasets in which
hundreds of thousands of measurements are in principle available for modeling, but even if each
measurement takes only 20 seconds on average, 100,000 measurements will still take 185
grueling three-hour sessions.

Luckily, advances in speech technology and machine learning now generally make it possible
to automate the measurement process. For example, a Bayesian approach can reliably automate
the usual semi-automatic approach to formant measurement (Evanini et al., 2009). Optional
segment deletion or segment substitution can often be automatically detected using HMM
matching techniques, as in the work of Fox (2006) on Spanish syllable-final /s/, or Yuan and
Liberman (2011a) on English “g-dropping”. And similar pattern-matching techniques can often
provide non-traditional quantitative proxies for phonetic dimensions such as /l/-velarization
(Yuan and Liberman, 2009) or vowel nasalization (Yuan and Liberman, 2011b).

One very common class of phonetic measurements involves time differences between nearby
phonetic “events”, these events being associated with things like vocal tract closures and
releases, the start and end of voicing or frication, and so on. Such events generally correspond
nicely to acoustic “edges”: extrema or zero-crossings in (derivatives of) time-functions easily
derived from speech signals. However, the correspondence depends crucially on choosing the
right scale: if the signals are examined on too fine a scale, they will produce many false alarms,
while looking on too coarse a scale will lead to events being missed.

An obvious solution is to do the analysis at many scales in parallel, with the idea that the
truth will be found somewhere in the resulting “scale space”. This leaves us with the problem of
integrating information across scales, which remains an area of active research in image
processing (e.g. Arbelaez et al. (2011). In speech processing, however, the use of scale-space
techniques seems largely to have been abandoned.

We have found that in the case of speech-event detection, a standard max-margin classifier
generally does a good job of integrating across scales. As a result, a simple scale-space
expansion of a few relevant acoustic features, followed by a standard sort of classification step,
often offers a simple and reliable way to detect events and to measure inter-event time
differences in speech. In this paper, we present a case study: the detection of stop bursts and
voice onsets, and the resulting measurement of “voice onset time” (VOT).

After showing that our technique works on three previously-collected datasets where
previously-created human VOT measurements exist, we’ll discuss the generalization of this
approach to other inter-event time measurements, and suggest a set of relevant applications.

VOT MEASUREMENT

Architecture

At its core the VOT measurement process reduces to accurately locating two acoustic events
in the stop region: the initial burst of energy accompanying the stop release, and the point at
which voicing begins for the following vowel. VOT, then, is just the duration of the interval
between the burst onset and the voicing onset. Intuitively, it should be possible to measure VOT
automatically using classifiers trained to discriminate frames immediately surrounding the



relevant acoustic events from more distant frames; indeed, both the stop burst and the point of
voicing onset should be reflected as large positive peaks in the decision functions of these
classifiers.

As is the case with edges in a gray-scale image, acoustic events such as a stop burst or
voicing onset are highly variable in presentation and particularly in width. Stop bursts present
as a brief instance of broad-band energy followed by two periods of frication noise – an initial
period generated at the expanding constriction and a terminal period consisting of aspiration
generated at the glottis – both of which may vary in duration as a function of stop, following
segment, and speaker (Klatt, 1975). As such they are present at a range of intrinisic scales,
suggesting no detector operating on a single scale representation can be optimal. Consequently,
we adopt a multi-scale representation as the basis for our detection algorithm.

Specifically, the algorithm proceeds as follows. First, within the stop region (identified via
forced-alignment between the recording and its transcript) a series of acoustic features (energies
in different bands, spectral entropy, spectral centroid, etc.) is extracted every millisecond,
yielding a time-series of feature vectors, which, along with its first and second differences, is
then projected into scale space via convolution with a series of gaussians. Following creation of
this multiscale representation, at each frame we evaluate the decision function of a max-margin
classifier and the time tb of the largest positive peak in this decision function is recorded. We
then evaluate the decision function of a similarly trained voicing-onset classifier at each frame
following the burst, recording the time of its highest positive peak as tv . If either burst onset or
voice onset detection fails, VOT measurement fails; otherwise, the VOT is recorded as tv − tb.

Features and scale space representation

Five acoustic features (along with their first and second differences) were extracted every ms
from the short-time power spectrum computed over a 5 ms gaussian window:

1. ∆ logE(t)= logE(t)−min
t′

logE(t′)

2. ∆ logEl(t)= logE l(t)−min
t′

logE l(t′)

3. ∆ logEh(t)= logEh(t)−min
t′

logEh(t′)

4. H(t)=−
∫

p( f , t) log2 p( f , t)d f

5. C(t)=
∫

f p( f , t)d f

where p( f , t) is the short-time spectrum of the signal at frequency f and time t, normalized as a
density.

The first three features – E, E l , and Eh – correspond to energy below 8000 Hz, energy below
500 Hz, and energy above 3000 Hz, all normalized relative to the local floor. The fourth feature,
H(t) is the spectral entropy (computed as the Shannon entropy of the power spectrum
normalized as a density) and measures flatness of the power spectrum. The fifth feature, C(t) is
just the spectral centroid, an indication of the center of mass of the power spectrum.

Let f be a feature and σ a scale parameter. Then, the value of f viewed at scale σ at time t
is given by

L f (t;σ2)=
∫

f (t− t′)g(t′;σ2)dt′ (1)

where g is a one-dimensional gaussian with zero mean and standard deviation σ ms. For each of
f ∈ {∆ logE, ∆ logE l , ∆ logEh, H, C} and σ ∈ {0ms, 0.5ms, ..., 10ms}, we compute L f (t), L f ′(t),
and L f ′′(t) yielding a multiscale representation for input to the burst and voicing onset detectors.



Burst detector

Of the features described above, we retain the following for burst onset detection, yielding
for each frame a 147-dimensional feature vector:

1. L∆logE(t; ·), L∆logE′(t; ·), and L∆logE′′(t; ·)
2. L∆logEh (t; ·), L∆logE′

h
(t; ·), and L∆logE′′

h
(t; ·)

3. LH(t; ·)
which, following (Rahimi and Recht, 2007), is then mapped to an 800-dimensional randomized
feature space approximating an RBF kernel. This 800-dimensional representation forms the
input to a max-margin classifier trained by Stochastic Gradient Descent (Bottou and Bousquet,
2008) on 1,774 voiceless stops randomly selected from the TIMIT training set (with γ set by
grid-search using 5-fold cross validation). Labels for training were constructed by retaining the
first two frames following the marked burst location as positive examples and all frames from 20
ms prior to the stop onset to 10 ms prior to the burst and from 10 ms post-burst to 20 ms post
stop offset as negative examples.

Voicing onset detector

Training of the voicing onset detector proceeded similarly to that of the burst detector using
the same 1,774 randomly selected voiceless stops. For each training instance the following
features were retained, yielding a 189-dimensional vector

1. L∆logE(t; ·), L∆logE′(t; ·), and L∆logE′′(t; ·)
2. L∆logE l (t; ·), L∆logE′

l
(t; ·), and L∆logE′′

l
(t; ·)

3. LC(t; ·), LC′(t; ·), and LC′′(t; ·)
which was then projected into an 800-dimensional randomized feature space approximating an
RBF kernel (again, γ set by grid-search using 5-fold cross-validation). Labels for training were
constructed by retaining the first two frames following the marked voicing onset as positive
instances and all frames from 20 ms prior to the stop onset to 5 ms prior to voicing onset and 5
ms to 50 ms following the voicing onset as negative instances.

PERFORMANCE

We evaluate the algorithm’s performance with comparison to human measurements of VOT
for three test sets:

TIMIT: We include all stops present in the standard 168 speaker TIMIT test set, whether
word-initial or medial, resulting in 5,459 stops (3,158 voiceless and 2,301 voiced).

Lab Speech (LAB) This is a corpus of speakers reading sentence lists under controlled lab
conditions (originally collected by Neal Fox and Sheila Blumstein for another study). Each
sentence ends in a word containing word-initial /p/ or /b/, which served as the targets of VOT
measurement. Data comes from 6 speakers whose VOTs were manually measured by the first
author of the present paper, coming to 2,264 stops.

BU Radio Speech (BU) The third dataset comes from a study by Cole et al. (2007), who
examined word-initial VOT in the BU Radio Speech corpus (Ostendorf et al., 1996). Data comes
from 4 speakers in the “lab news” portion analyzed, where professional radio news announcers
read news stories in a laboratory setting. The ground-truth VOT measurements are those
provided by Cole et al. (2007) and comprise 931 stops.



TIMIT

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

TIMIT (voiceless)

Difference (ms)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

all
initial
medial

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

TIMIT (voiced)

Difference (ms)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

all
initial
medial

FIGURE 1: Cumulative distributions of absolute differences between human and system VOT measurements on
voiceless (left) and voiced (right) stops in the full TIMIT test set. Mean absolute differences: all stops, 4.99 ms;
voiceless, 4.76 ms; voiced, 5.3 ms

Overall, performance on TIMIT is generally good with ≈ 65% of measurements within 5 ms
and > 85% within 10 ms of human. Figure 1 depicts the cumulative distribution function of the
absolute differences between system and human VOT measurements for voiceless (left panel)
and voiced (right panel) stops. Overall performance for voiceless and voiced stops is nearly
identical. Similarly, there is no drastic difference between performance on initial and medial
stops, though in the voiced case initial stops appear to be slightly easier than medial ones.

LAB

Despite being trained on TIMIT, the algorithm performs even better on the stops in LAB. As
can be seen in the left panel of Figure 2, > 80% of the system measurements are within 5 ms and
nearly 100% within 10 ms of the human-marked values. Performance is rather better for /b/
than for /b/, with nearly 90% of the /b/ measurements withing 5 ms of human as compared to
80% for /p/.
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FIGURE 2: Left: Cumulative distribution of absolute differences between human and system VOT measurements
for all instances of /p/ and /b/ in LAB. Mean absolute differences: all stops, 2.84 ms; voiceless, 3.44 ms; voiced, 2.08
ms. Right: Cumulative distributions of human/system and human/human differences for speaker 9. Mean absolute
differences: system-human, 1.49 ms; human-human, 1.50 ms.

The error distribution in Figure 2 is certainly promising and suggests that the system’s VOT
measurements could replace those of human annotators. As a test this idea two of the authors
independently annotated a subpart of LAB (corresponding to all 229 stops of speaker 9) and



their measurements were compared to that of system. The distributions of these system-human
and human-human differences for this speaker are depicted in the right-panel of Figure 2.
Strikingly, the system-human differences actually tend to be lower than the human-human
differences.

BU Radio Speech
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FIGURE 3: Cumulative distribution of absolute differences between human and system VOT measurements on voice-
less and voiced stops in BU Radio Speech. Mean absolute differences: all stops, 4.57 ms; voiceless, 4.94 ms; voiced,
3.68 ms

We see similarly good generalization to a novel domain when we apply the system to the BU
data, as seen in Figure 3. For BU > 70% of the differences are within 5 ms and > 90% within 10
ms compared to the measurements in Cole et al. (2007). As was the case in LAB, performance is
somewhat better for voiced than for voiceless stops, particularly below 10 ms.

In Figure 4, we see the plots of mean VOT by voicing and accent and by place of articulation
(POA) and accent, comparing the system’s results to the original (human) measurements from
Cole et al. 2007. The patterns are qualitatively identical, and quantitatively quite similar – the
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FIGURE 4: Interaction graphs illustrating the effect of Accent ((A)ccented/(U)naccented) on VOT. Left: #, Voiced; ∆,
Voiceless. Right: V, velar; C, coronal; L, labial.

human VOT measurements are systematically a few ms longer than the system’s
measurements, apparently due to the fact that Cole et al.’s definition of “voice onset” (“the zero
crossing nearest to the onset of the second formant of the following vowel”) tended to place this
point slightly later than the automatic system did.



Recall

From the edge-detection literature, we also know that while boundary placement accuracy
tends to increase with increasing scale, recall also decreases. Consequently, we also consider the
recall of the system, defined as the percentage of stops with a human marked VOT where the
system attempts a measurement. Table 1 gives these rates for all three test sets. For all test
sets overall recall exceeds 80% with 90% exceeded in both TIMIT and LAB.

voiceless voiced all
TIMIT 94.4 86.0 90.9
LAB 93.7 96.1 94.7
BU 84.4 80.3 83.2

TABLE 1: Recall (% stops detected) across test sets.

Comparison to previous systems

Automatic VOT measurement has been treated previously (Niyogi and Sondhi, 2002; Das
and Hansen, 2004; Stouten and Van hamme, 2009; Sonderegger and Keshet, 2010), with the
work closest to the current approach being that of Sonderegger and Keshet (2010) (hereafter,
S&K). S&K report performance for word-initial voiceless stops in the core and full TIMIT test
sets (excluding calibration sentences) using two metrics: root mean square error (RMS) of the
burst placement and percentage of cases where the manual and automatic measurements differ
by at least 10% (≥10%). Table 2 gives these metrics for our multi-scale algorithm on the same
sets and compares them to those achieved by S&K. Our algorithm does better than S&K for
proportion of errors ≥ 10% on both test sets and for RMS error on the full TIMIT test set, with
S&K achieving somewhat better RMS error for the core test set. Both the features and the
machine-learning algorithms were somewhat different for the two approaches. Our point here is
just that our choices are competitive.

system mean (ms) RMS (ms) ≥ 10%
TIMIT multi-scale 4.67 6.14 31
(all) S&K – 8.66 35
TIMIT multi-scale 4.11 5.87 28
(core) S&K – 5.28 34

TABLE 2: Comparison of system performance on core and full TIMIT test using metrics from (Sonderegger and
Keshet, 2010). Additionally, we depict mean error.

CONCLUSION

We have argued that a standard max-margin classifier, operating on a scale-space expansion
of a set of sensible input features, provides a good general architecture for detecting phonetic
events and measuring time intervals between them. We used the example of Voice Onset Time
as a case study, and showed that a simple implementation of our architecture works well on
three existing datasets for which human VOT measurements are available.

There are many other duration-measurement tasks for which this approach is suited: stop
closure durations, the durations of fricatives or nasal murmurs, inter-obstruent vowel durations,
and so on. And there are many reasons to want to measure such durations: linguistic questions
like the distribution of raddoppiamento fonosintattico in Italian (Borrelli, 2000); psychological
questions like the effects of phonological neighborhood density on speech production (Gahl et al.,



2012); clinical questions like the effects of parkinsonism on speech timing patterns (Rusz et al.,
2011).

Obviously there is a relationship between scale space features and more general trajectory
modeling methods. One currently-popular way to incorporate more general trajectory
information is to use so-called “deep belief nets” (Hinton et al., 2006), operating on sequences of
adjacent frames. We’ve used this approach for several speech-classification and event-detection
problems, with generally positive results. However, the scale-space method described above
often works just as well, if supplied with an appropriate set of inputs, and notably lacks the
additional training requirements of the DBN features.
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