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Abstract. Forced alignment has been at the core of speech recognition technology since 
the 1970s, and was first used in phonetics research in the 1990s. Progress in digital 
multimedia, networking and mass storage is creating enormous and growing volumes of 
transcribed speech, which forced alignment can turn into vast phonetic databases. 
However, speech science has so far taken relatively little advantage of this opportunity, 
because it requires tools and methods that are now difficult for most speech researchers to 
access, and are incompletely developed and tested for many applications. But these 
technologies are leading the study of human speech into a revolutionary new era: a 
movement from the study of small, private, and mostly artificial datasets to the analysis 
of published collections of natural speech that are thousands or even millions of times 
larger. In this chapter, we illustrate some of the ways that forced alignment can be used as 
a tool in speech science, and discuss directions for improvement.   
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1 Introduction 
 
In the last twenty-five years, an enormous and growing body of digital speech has become available: 
archived broadcasts of news reports, interviews, speeches, and debates; oral histories; court recordings; 
podcasts; audiobooks; and so on. A small fraction of this material – still comprising many thousands of 
hours – has been collected and published in the form of corpora for speech technology research. These 
very-large-scale bodies of data make it possible to use natural speech in developing and testing hypotheses 
across many types of individual, social, regional, temporal, and contextual variation, as well as across 
languages. However, in contrast to speech technology research, speech science has so far taken relatively 
little advantage of this opportunity. This is partly because most researchers lack the knowledge and skills 
required to access the needed tools and methods, and partly because the tools and methods themselves are 
incomplete and untested.  
    Given only digital audio, we can study the distribution of speech and silence segments, or of purely 
acoustic-phonetic features such as fundamental frequency. But for most kinds of speech science, we need to 
know which words were said when, and how they were pronounced – and this entails the availability of 
phonetic segmentation and transcription. Relatively few speech corpora come with such annotations, 
because manual phonetic segmentation is time-consuming, expensive and inconsistent, with much less than 
perfect inter-annotator agreement (Godfrey et al. 1992; Leung and Zue 1984; Cucchiarini 1993). 

Automatic phonetic segmentation is, therefore, necessary for corpus-based phonetics research.  Luckily, 
automatic phonetic segmentation is the essential result of forced alignment, a technique developed for 
training automatic speech recognition systems (Jelinek 1976) and for extracting acoustic units for speech 
synthesis systems  (Wightman and Talkin 1997).  

This task normally requires two inputs: recorded audio and a conventional (orthographic) transcription. 
The transcribed words are mapped into a phone sequence or a lattice of possible phone sequences, by using 
a pronouncing dictionary and/or grapheme to phoneme rules. Phone boundaries are determined by 
comparing the observed speech signal and pre-trained, Hidden Markov Model (HMM) based acoustic 
models. Typically every phone in the acoustic models is represented as an HMM that consists of three left-
to-right non-skipping states (as shown in Figure 1): the beginning (s1), middle (s2), and ending (s3) parts of 
the phone, plus empty start (s0) and end states (s4) for entering and exiting the phone. From the training 
data, an acoustic model (e.g., a Gaussian Mixture Model) is built for each state (except s0 and s4), as well as 
the transition probabilities between pairs of states (Figure 1). The speech signal is analyzed as a successive 



set of frames (e.g., every 10 ms). The alignment of frames with phones is determined by finding the most 
likely sequence of hidden states (which are constrained by the known sequence of phones derived from 
transcription) given the observed data and the acoustic models represented by the HMMs. The reported 
performances of state-of-the-art HMM-based forced alignment systems range from 80%-93% agreement 
(of all boundaries) within 20 ms compared to manual segmentation (Hosom 2009; Yuan et al. 2013) on the 
TIMIT corpus (Garofolo et al. 1993). Human labelers have an average agreement of 93% within 20 ms, 
with a maximum of 96% within 20 ms for highly-trained specialists (Hosom 2000). 
 
 

 
Fig. 1. Hidden Markov Model with three non-skipping states. 

 
    With the availability of automatic speech recognition toolkits such as HTK and Kaldi, forced alignment 
techniques are more easily accessible to speech researchers. In recent years, automatic speech analysis with 
the use of forced alignment has started to be developed in phonetic and sociolinguistic research, for 
example, automatic measurement of vowel formants (Evanini et al. 2009; Labov et al. 2013), voice onset 
time (Sonderegger and Keshet 2012), and speech variation in general (Fox 2006).  
    This paper describes the use of forced alignment in corpus-based phonetics research. We illustrate the 
use of forced alignment in phonetics in the case of two very different sorts of speech data: recordings of a 
Mandarin proficiency test, and collections of Mandarin broadcast news. In this context, we discuss three 
sorts of research work: using forced alignment as a method to produce phonetic segmentation; using forced 
alignment as a method for investigating allophonic variation; and efforts to improve the performance of 
forced alignment itself.  
 
 
2 Using forced alignment for phonetic segmentation 
 
In Yuan et al. (2016), we investigate the use of pauses and pause fillers (such as 嗯, 呃) in Mandarin 
Chinese. We focus on two factors: speaker sex and proficiency. Our analysis is based on 13 hours of 
monologue speech from 267 speakers.  
 
 
2.1 Corpus 
 
Putonghua Shuiping Ceshi (PSC) is the national standard Mandarin proficiency test in China. The test 
consists of four parts: The first two parts involve reading 100 monosyllabic and 50 disyllabic words; the 
third part requires reading an article of 300 characters, randomly selected from a pool of 60 articles; and the 
last part entails speaking freely on a given topic for three minutes. The four parts are graded separately and 
numerically and the total score out of 100 points is converted to one of six categorical proficiency levels, 
ranging from high to low: 一级甲等 (Class 1 Level 1)，一级乙等 (Class 1 Level 2)，二级甲等 (Class 2 
Level 1)，二级乙等 (Class 2 Level 2)，三级甲等 (Class 3 Level 1)，and 三级乙等 (Class 3 Level 2). In 
order to qualify for teaching K-12, one must pass 二级乙等 (Class 2 Level 2). 
    Our dataset consists of recordings of college students at Beijing Normal University who took the PSC 
test in 2011. We used the spoken monologues (the last part of the test) from 267 speakers, 178 female and 
89 male, which contain approximately 13 hours of speech. The proficiency levels of the speakers range 
across four levels, from 一级乙等 to 三级甲等 (hereafter, L1 to L4). 
 
 



2.2 Transcription and forced alignment 
 
The spoken monologues were first transcribed by a professional transcriptionist, then proofed for errors and 
pause fillers, which were ignored in the first pass, were added. The pause fillers were categorized into two 
types via transcription: one without nasalization (transcribed as e) and one with nasalization (transcribed as 
en). We then employed forced alignment to determine the boundaries of the transcribed words, including 
pause fillers. 

Pauses are usually not transcribed. To automatically identify pauses in speech using forced alignment, a 
special HMM called a “tee-model” can be inserted at word boundaries. A “tee-model” has a direct 
transition from the entry to the exit node. Therefore, it can either be aligned to a true pause if there is a 
silence in speech or completely skipped if there is no silence. 
    Through forced alignment with a “tee-model” for identifying inter-word pauses, we located 26,885 
pauses in the 267 monologues in our dataset. The dataset also contains 100,212 words and 3,058 pause 
fillers, of which 1,192 are e and 1,866 are en. 
 

2.3 Effect of speaker sex and proficiency level on pauses and pause fillers 

The total numbers of pause fillers, pauses, and words for males and females and for different proficiency 
levels are listed in the top part of Table 1.  
 

Table 1. Frequencies and relative frequencies of pauses and pause fillers. 
 

 Female Male L1 L2 L3 L4 
# e 671 521 384 403 352 53 
# en 1287 579 568 655 478 165 
# pauses 17828 9057 7231 11165 6591 1898 
# words 68331 31881 29514 42461 22695 5542 
e/(e+en) 0.343 0.474 0.403 0.381 0.424 0.243 
e/words 0.010 0.016 0.013 0.010 0.016 0.010 
en/words 0.019 0.018 0.019 0.015 0.021 0.030 
(e+en)/words 0.029 0.035 0.032 0.025 0.037 0.039 
pauses/words 0.261 0.284 0.245 0.263 0.290 0.343 

 
For each speaker we compute five relative frequencies:  

1. e/(e+en): the proportion of e in pause fillers;  
2. e/words: the number of e per word; 
3. en/words: the number of en per word; 
4. (e+en)/words: the number of pause fillers per word; 
5. pauses/words: the number of pauses (including all silent intervals) per word. 

 
    Mixed-effects logistic regression models (Bates et al. 2015) were used to assess the effects of sex and 
proficiency level on the relative frequencies of pauses and pause fillers, in which speaker was treated as a 
random factor. The results are shown in the bottom part of Table 1, where the mean values of the five 
relative frequency measures are listed, with bold-italic numbers representing statistical significance at p <  
.05. We can see that males use more e than females, but there is no difference between them on the 
frequency of en. Therefore, the proportion of nasal-final pause fillers is higher in female than in male 
speakers, as was found in the studies of Germanic languages (Wieling et al. 2016). Proficiency does not 
appear to affect the frequency of either e or en. With respect to the use of pauses, both sex and proficiency 
are a significant factor. Males use more pauses than females, and less proficient speakers also use more 
pauses. 
 
 



3 Using forced alignment for investigating speech variation 
 
In Yuan and Liberman (2015), we employed skip-state HMMs to adapt forced alignment to the 
investigation of phonetic reduction and deletion. With the improved forced alignment, we investigate the 
reduction of plosives and affricates in terms of duration in Mandarin broadcast news speech. 
 
 
3.1 Corpus 
 
The 1997 Mandarin Broadcast News Speech (HUB4-NE, LDC98S73) corpus was used (Huang et al. 1998). 
We extracted “utterances” (defined as between-pause units that were manually time-stamped) from the 
corpus and listened to each to exclude those with background noise and music. Utterances from speakers 
whose names were not tagged in the corpus or from speakers with accented speech were also excluded. The 
final dataset consisted of 7,849 utterances from 20 speakers.  
	
	
3.2 Forced alignment with skip-state HMMs 
 
Phonetic reduction is pervasive in natural speech (Johnson 2004). It is not only an important topic in 
linguistics research, but also presents a great challenge in forced alignment and other speech technologies. 
Figure 2 shows three examples of the phoneme /j/ (which is /tɕ/ in IPA, an alveolo-palatal affricate) from 
the same speaker in the corpus. From both the waveforms and spectrograms we can see that the first 
example is a full phonetic realization of the phoneme, which contains a complete closure followed by a 
portion of frication noise. The second example only contains an incomplete closure but no frication. The 
third example does not show any consonantal features, suggesting that the phoneme is deleted. 

 

 
Fig. 2. Examples of variation in the phonetic realization of /j/: full, reduction, and deletion. 

  
   Apparently the non-skipping 3-state HMMs (Figure 1) cannot handle severe reduction and deletion in 
natural speech. We modeled the phonetic reduction and deletion by employing skip-state HMMs (as shown 
in Figure 3), in which every state can be skipped. If all the states are skipped, the result will be a phone 
with zero duration – a phone that is deleted in the surface form but still preserved in the lexicon or 
pronunciation model. In many cases coarticulation and phonetic transitions remain even when a phone is 
“deleted”, as we can see from the third example of /j/ in Figure 2. 
 

 
Fig. 3. HMM with skip-state transitions. 



3.3  Reduction of plosives and affricates in Mandarin broadcast news speech 
	
Resulting from forced alignment with skip-state HMMs for plosives and affricates, the mean durations of 
the four types of plosives and affricates are listed in Table 2. From the table we can see that the inherent 
durations of the four consonant types, in ascending order, are: unaspirated stops (~50 ms), unaspirated 
affricates (~65 ms), aspirated stops (~85 ms), and aspirated affricates (~100 ms). We can also see that the 
two dimensions – aspiration and frication – in the production of these consonants are additive in terms of 
segment duration: the base duration (unaspirated stops) is ~50 ms; frication adds ~15 ms and aspiration 
adds ~35 ms. 
 

Table 2. Mean durations of the four types of plosives and affricates. 

Consonant type Aspiration Frication Duration (ms) 
Unaspirated Stops 

/b,d,g/ 
- - 50.2 

base 
Unaspirated Affricates 

/z, zh, j/ 
- + 65.7 

≈ base + 15 (F) 
Aspirated Stops 

/p, t, k/ 
+ - 85.4 

≈ base + 35 (A) 
Aspirated Affricates 

/c, ch, q/ 
+ + 98.1 

≈ base + 15 (F) + 35 (A) 
 

    Figure 4 shows the duration distributions (cumulative percentages) of the four consonant types. We can 
see that for any given duration of 30 ms or longer, an inherently longer plosive/affricate is unlikely to be 
shorter than that duration than an inherently shorter one. This result suggests that the four types of plosives 
and fricatives have similar patterns of reduction (and strengthening) in terms of duration. At 10 ms and 20 
ms (which represents a severe reduction or deletion), however, the cumulative percentages are not 
correlated with the inherent durations of the consonant types. The aspirated stops have higher cumulative 
percentages than the unaspirated affricates at 10 ms (3.5% vs. 1.9% ) and 20 ms (4.9% vs. 4.1%), although 
the inherent duration of the aspirated stops is longer than the unaspirated affricates (and therefore less 
likely to reduce if the correlation holds). This result suggests that stops are more likely to be deleted than 
affricates in Mandarin broadcast news speech. It also suggests that reduction and deletion may result from 
different phonetic processes, rather than a continuum of the same process. 

	

	
Fig. 4. Duration distributions of the four types of plosives and affricates. 

 
 
 
 



4 Improving forced alignment for phonetic research 
 
 
4.1 Phone boundary models for forced alignment 
 
A main drawback of the HMM-based forced alignment for phonetic segmentation is that phone boundaries 
are not represented in the model. The boundaries are simply derived from the alignment of phone states 
with frames. This is different from the manual phonetic segmentation process, in which the acoustic 
landmarks at phone boundaries (Stevens 2002), e.g., an abrupt spectral change, are used to determine the 
location of a boundary. In our effort to overcome this drawback and improve forced alignment (Yuan et al. 
2013; Yuan et al. 2014), we employed explicit phone boundary models within the HMM framework. The 
idea is to treat phones and phone boundaries as independent HMMs. A boundary is determined by the 
alignment of its own state with frames. The phone boundary models were a special 1-state HMM (as shown 
in Figure 5), in which the state cannot repeat itself: 
 

 

 
 

Fig. 5. Special 1-state HMM for phone boundaries with transition probabilities a01 = a12 = 1. 
     
    The special 1-state phone boundary HMMs were combined with 3-state phone HMMs. Given a phonetic 
transcription, phone boundaries were inserted between phones. For example, “sil i g e sil” became “sil sil_i 
i i_g g g_e e e_sil sil”. The boundary states were tied through decision-tree based clustering, similar to 
triphone state tying in speech recognition (Young et al. 1994). 
    Our results demonstrated that using special 1-state HMMs for phone boundaries could significantly 
improve forced alignment accuracy on both English TIMIT (~25% relative error reduction) (Yuan et al. 
2013) and Mandarin Hub-4 Broadcast News Speech (~40% relative error reduction) (Yuan et al. 2014). 

	
 
4.2 Phone boundary models for automatic scoring of Mandarin proficiency 
	
    It is well known that some phonetic contrasts are more difficult in language learning. The retroflex 
consonants (/zh, ch, sh, r/) in Mandarin Chinese, for example, are difficult to learn for many speakers 
whose first language does not have retroflex sounds. The pronunciation of these consonants is a prominent 
cue for native speakers to perceive accent. Phone boundaries may also contain useful information about a 
speaker’s language proficiency. The timing of voicing in stop consonants, which is measured by voice 
onset time (VOT), is a boundary-bound phonetic feature that has been extensively studied in linguistics 
(Lisker and Abramson 1964; Cho and Ladefoged 1999). The VOT of stops varies across languages. 
Individuals who learn an L2 later in life often fail to produce consonants with authentic VOT values in the 
L2 (Flege 1991). 
    Having both phone and phone boundary models in forced alignment, we can compare the “goodness” of 
different phones and phone boundaries in automatic scoring of Mandarin proficiency. Following the 
method in (Witt and Young 2000), we computed a goodness-of-pronunciation score for every phone and 
phone boundary in the Putonghua Shuiping Ceshi corpus. The idea is to find the posterior probability of a 
phone p given its acoustic segment O(p), P(p|O(p)), which can be approximated by the likelihood of O(p) 
corresponding to phone p, divided by the maximum likelihood of  O(p): 
 

GOP(p) = log p(o( p) | p)
max pq∈Q (o

( p) | q)
 

 



where Q is the set of all phone and boundary models trained on “standard” Mandarin speech. The acoustic 
segment boundaries of O(p) and the corresponding likelihood (the numerator) was determined by forced 
alignment. To compute the maximum likelihood of O(p) (the denominator), all utterances were recognized 
using the acoustic models and an unconstrained phone and boundary loop. The likelihood of O(p) 
corresponding to the best hypothesis within its boundaries (it may contain more than one phones or 
boundaries) was used to approximate its maximum likelihood. The goodness of pronunciation scores are 
expected to have a positive correlation with human scores: A lower goodness of pronunciation score 
suggests that the phone or boundary fits the “standard” models less well hence should receive a lower 
proficiency score. 
      For every speaker in the dataset, we calculated his/her mean goodness of pronunciation score on every 
phoneme. The phone boundaries were grouped into two types: within-syllable (i.e., boundaries between an 
initial and a final) and cross-syllable (i.e., boundaries between a final and an initial), and a mean goodness 
of pronunciation score was calculated for each type. For each phone and boundary type, we then computed 
the correlation between all speakers’ mean goodness of pronunciation scores and their proficiency scores. 
The results are listed in Table 3.  
 

Table 3. Correlations between goodness of pronunciation and proficiency scores. 
 

Phone or 
boundary 

Correlation 
(Pearson’s r) 

Phone or 
boundary 

Correlation 
(Pearson’s r) 

       within-syl 0.472 g 0.157 
cross-syl 0.445 r 0.144 
iii 0.422 b 0.141 
sh 0.383 uan 0.126 
zh 0.327 m 0.125 
s 0.277 iao 0.120 
a 0.271 iu 0.114 
ch 0.269 ai 0.114 
ian 0.256 ei 0.112 
i 0.245 n 0.111 
ing 0.238 eng 0.110 
d 0.225 en 0.102 
h 0.225 ie 0.100 
an 0.224 k 0.060 
l 0.214 ong 0.054 
z 0.210 uo 0.052 
q 0.202 ao 0.045 
t 0.194 iang 0.041 
j 0.192 u 0.036 
f 0.190 ang 0.029 
in 0.182 v 0.019 
x 0.179 ii 0.007 
ui 0.174 e -0.004 

*The correlations lower than 0.12 are not significant. 
 

    We can see from Table 3 that the correlation varies greatly across phonemes. The two boundary types 
have the highest correlations, suggesting that phone boundaries are more helpful than phonemes in 
automatic proficiency scoring. Within-syllable boundaries work better than cross-syllable boundaries. 
Among the phonemes, the retroflex consonants, /zh, ch, sh/, and the vowel following these consonants, /iii/, 
are better than the others. The vowel /e/ is the only phoneme that has a negative correlation, although the 
correlation is not significant. /e/ appears in the possessive particle “的” (de0) in Mandarin Chinese, which 
is the most frequent word in the language. In our dataset, there are 23,501 /e/ tokens, 15,919 (64.7%) of the 
tokens were from the word “的” (de0).   
 



5 Conclusion 
 
In this article, we have illustrated the integration of forced alignment, a technique developed in automatic 
speech recognition, into corpus-based phonetics research. We have discussed three aspects of this research: 
forced alignment as a tool for phonetic segmentation, forced alignment as a method for investigating 
speech variation, and efforts to improve the technique of forced alignment itself. The integration of 
techniques from speech technology is helping the field of phonetics to enter a new era: a movement from 
the study of small, mostly artificial datasets to the analysis of published corpora of natural speech that are 
thousands of times larger.  
    Much remains to be done. In particular, we need to do a better job of bridging the gap between standard 
orthographic transcriptions and phonetic representations. Because natural speech is so highly variable, 
simple word-to-phoneme mapping (either by using a pronouncing dictionary or grapheme to phoneme 
rules) may not always generate phone sequences that contain the correct pronunciation. Moreover, 
orthographic transcriptions are often inaccurate or incomplete, typically omitting most disfluencies and 
self-corrections. Future research needs to do a better job of modeling pronunciation variation (e.g., deletion, 
reduction, and insertion), disfluencies and imperfect transcription in forced alignment. 
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