Lexical and acoustic characteristics of young and older healthy adults

Sunghye Cho, Naomi Nevler, Sanjana Shellikeri, Natalia Parjane, David J. Irwin, Neville Ryant, Sharon Ash, Christopher Cieri, Mark Liberman, and Murray Grossman

1Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA
2Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA

Please address correspondence to:

Sunghye Cho

Linguistic Data Consortium

3600 Market Street, Suite 810

University of Pennsylvania

Philadelphia, PA, 19104-2653

email: csunghye@ldc.upenn.edu

voice: 215-898-0464
Study funding:

National Institutes of Health (AG017586, AG053940, AG052943, NS088341, DC013063, AG054519), the Institute on Aging at the University of Pennsylvania, the Alzheimer’s Association (AACSF-18-567131), an anonymous donor, and the Wyncote Foundation.

Disclosures:

Dr. Grossman participates in clinical trials sponsored by Alector, Eisai and Biogen that are unrelated to this study. He also receives research support from Biogen and Avid that is unrelated to this study, and research support from NIH. He receives financial support from Neurology for his work as an Associate Editor. Dr. Mark Liberman served on the Scientific Advisory Board for Baidu Research, USA, and is a co-editor of the Annual Review of Linguistics. All other authors have nothing to disclose.
Abstract

Purpose: This study examines the effect of age on language use with an automated analysis of
digitized speech obtained from semistructured, narrative speech samples.

Method: We examined the Cookie Theft picture descriptions produced by 37 older and 76
young participants. Using modern natural language processing and automatic speech recognition
tools, we automatically annotated part-of-speech categories of all tokens, calculated the number
of tense-inflected verbs, mean length of utterance, and vocabulary diversity, and rated nouns and
verbs for five lexical features: word frequency, familiarity, concreteness, age of acquisition and
semantic ambiguity. We also segmented speech signals into speech and silence, and calculated
acoustic features such as total speech time, mean speech and pause segment durations, and pitch
values.

Results: Older speakers produced significantly more interjections, pronouns, and verbs, and
fewer conjunctions, determiners, nouns, and prepositions than young participants. Older
speakers’ nouns and verbs were more familiar, more frequent (verbs only), and less ambiguous
compared to those of young speakers. Older speakers produced shorter utterances with a lower
vocabulary diversity than young participants. They also produced shorter speech segments and
longer pauses with increased total speech time and total number of words. Lastly, we observed
interaction of age and sex in pitch ranges.

Conclusions: These results suggest that older speakers’ lexical content is less diverse and they
use shorter utterances than young participants in monologic, narrative speech. Findings show that
lexical, acoustic characteristics of semi-structured speech samples can be examined with fully
automated methods. (242 words; should be shorter than 250 words)
Not all people speak a language in the same way, even if they are native speakers of the same language. Language use is affected by factors such as an individual’s age and biological sex. While age and sex have received considerable attention in the literature, results are mixed. In the case of age, for example, previous studies consistently observe that older speakers exhibit reduced fluency (Bortfeld, Leon, Bloom, Schober, & Brennan, 2001; Heller & Dobbs, 1993; Kemper, 1992; Spieler & Griffin, 2006), increased pause duration (Bóna, 2014; Hartman & Danhauer, 1976) and increased pause rate (Bóna, 2014; Martins & Andrade, 2011) when compared to young speakers. Some previous studies have found that vocabulary diversity in language use is maintained or even increases as people age (Horton, Spieler, & Shriberg, 2010; LaGrone & Spieler, 2006; Utll, 2002; Verhaeghen, 2003), suggesting that older speakers use a greater variety of words compared to younger speakers. Moscoso del Prado Martín (2017) who looked at natural conversations also found that vocabulary diversity increases throughout one’s lifetime. On the other hand, Luo et al. (2017) who also examined language use in natural conversations found no age effect on vocabulary diversity, when interlocutors were not taken into account. When the context (i.e., interlocutors) was considered into account, they found that older speakers use fewer unique words and more common words with children than young adult speakers. Also, most previous studies observe that older speakers speak more slowly than young speakers when reading isolated sentences (Bóna, 2014; Jacewicz, Fox, & Wei, 2010; Spieler & Griffin, 2006) and during natural conversations (Horton et al., 2010; Jacewicz et al., 2010; Kemper, Herman, & Lian, 2003). Yet, some studies, such as Cooper (1990), do not find a significant difference in the number of total words or total speech time as a function of age. In
this study, we examined the effect of age and its interaction with language use by means of an
automated analysis of digitized speech obtained from a semistructured speech sample.

The effect of sex on language has also been extensively studied, but again previous studies report
mixed results. For example, previous studies consistently have found that male speakers produce
more filled pauses (e.g., *um* or *uh*) than females (Bortfeld et al., 2001; Mulac, Wiemann,
Widenmann, & Gibson, 1988; Shriberg, 1996). Similarly, Moscoso del Prado Martín (2017) has
showed that male speakers’ syntactic diversity decreases from age 45 onward with increased
speech disfluency markers in contrast to female speakers whose syntactic structures show
increased diversity with fewer disfluency markers. In the case of the total number of words,
Bortfeld et al., (2001) have found that male speakers do not necessarily produce more words than
females, whereas some studies (e.g., Mulac, Lundell, & Bradac, 1986; Mulac et al., 1988) have
found that female speakers produce wordier sentences than male speakers; Other studies (e.g.,
Dovidio, Brown, Heltman, Ellyson, & Keating, 1988; Mulac, Seibold, & Farris, 2000) report a
higher total number of words and increased turn-taking during conversations in males compared
to females. Also, the interaction of age and sex on the total number of words has been studied
with mixed findings. For example, Ardila and Rosselli (1996) find that the total number of words
does not differ by sex in young and mid-aged (16–50 years) groups, but significantly differs in
an older group (51–65 years), where older females produce significantly more words than their
male counterparts (see also Mulac et al., 1986, 1988). The interaction of age and sex on pitch is
also reported; previous studies (Ferrand, 2002; Linville, 1987; Mueller, 1997; Russell, Penny, &
Pemberton, 1995; Sataloff, Rosen, Hawkshaw, & Spiegel, 1997) find that pitch, which is
commonly measured by fundamental frequency (F0), increases in older men, but decreases in
older women, suggesting that the sex difference in pitch is modulated by age. However, a recent
large-scale study by Nishio and Niimi (2008), for example, does not find a significant correlation between age and pitch in male speakers, but finds a strong negative correlation in female speakers.

In the context of these inconclusive reports, it is not unreasonable to revisit the effect of age and sex on speakers’ language production. Differences in results may come from different data types (reading vs. natural conversations), different definitions of similar concepts, and different methods of measuring lexical/acoustic features. In this study, we analyze 1-minute picture description speech samples of the same picture, which allows all participants to express themselves in their own words with minimal constraints while controlling for potential confounding factors along with age and sex, such as a topic or familiarity of the topic and interlocutors of conversations. This approach has been successfully applied in many previous studies (e.g., Ardila & Rosselli, 1996; Cooper, 1990; Cousins, Ash, Olm, & Grossman, 2018; Kavé et al., 2009; Nevler, Ash, Irwin, Liberman, & Grossman, 2019; Nevler et al., 2017), and we can assess the coherence and appropriateness of the content of speech samples and compare the results with those from previous studies.

It is striking that very few studies have considered both lexical and acoustic features at the same time, which leaves a major gap in our understanding of the effect of age and sex on language use. This might partly be due to the fact that many previous studies rely on manual assessments of lexical and acoustic features, and the manual examination of both aspects of speech is extremely time-consuming. Thanks to the recent development of natural language processing (NLP) and automatic speech recognition (ASR) tools, in this study we are able to establish and illustrate objective, quick, replicable, and fully automated methods of analyzing the effect of age and sex on language use. This will allow us to clarify some of the previously observed mixed results.
using an objective and highly repeatable method. Thus, the goals of the present study are to (1) examine and verify age- and sex-related properties of both lexical and acoustic characteristics of speech reported in previous studies with modern, fully automated methods, (2) further explore features of speech that are yet to be analyzed, and (3) to establish normed linguistic data that is specific to picture description.

2. Methods

2.1 Participants

We collected about 1-minute-long picture descriptions from two age groups using the Cookie Theft picture from the Boston Diagnostic Aphasia Examination (Goodglass, Kaplan, & Weintraub, 1983). A young age group consisting of 76 volunteers (18–22 years) were all undergraduate students, recruited at the University of Pennsylvania. This group volunteered to participate in a pilot study, where they performed 3 neuropsychological tests (F-letter fluency, judgment of line orientation and symbol-digit substitution) and 4 different picture description tasks including the Cookie Theft. We only included the Cookie Theft picture descriptions in this report. The students received course credits for their participation in this study.

The other group consisted of 37 older adults, whose age ranged from 52 to 89 at the time of recording. Most of these participants were caregivers of patients at the Frontotemporal Degeneration Center of the Hospital of the University of Pennsylvania. We used their Cookie Theft descriptions from the Boston Diagnostic Aphasia Examination to examine the aging effect on semi-structured, narrative, natural speech samples. They contributed their speech samples on
a voluntary basis. None of the young or older participants reported any hearing or speaking difficulties, and all of them were native speakers of English.

The two age groups were matched on sex ratio ($p = .11$), but significantly differed in education level ($p < .001$), since our young participants were all undergraduate students who had not yet completed their Bachelor’s degree, while our older participants were a highly educated group, where most of them (29 out of 37) had received higher education. However, when considering the age of the participants, education levels were at ceiling. Also, we note that the variation in education level was not great. For this reason, we did not covary for education level in statistical tests. All speakers participated in an informed consent procedure approved by the Institutional Review Board at the University of Pennsylvania.

There were 6 more participants in our data, but we excluded these participants who were not suitable for the purpose of our study. Two young speakers out of the six participants were excluded because of their missing demographic information (either sex or age). One older control sample and 3 young adults’ samples were excluded due to low signal-to-noise ratio of their speech sample, which is an acoustic correspondence of audio quality. The total number of participants after exclusion was 113. Both age and education level did not significantly differ by sex within each group. The demographic information of the participants is summarized in Table 1.

2.2 Text data processing and measurements

We employed spaCy (Honnibal & Johnson, 2015; https://spacy.io), a natural language processing library in Python, to automatically tag part-of-speech (POS) information of all tokens in the speech samples. We used spaCy’s basic language model (‘en_core_web_sm’) for English to
process the data. There are two POS tagging schemes in spaCy: one is the Penn Treebank tag set (Marcus, Santorini, & Marcinkiewicz, 1993), and the other is the Universal POS tag set (Petrov, Das, & McDonald, 2012), which was automatically mapped from the Penn Treebank tag set. We wrote a Python program to automatically tokenize the transcripts of speech samples and annotate the POS category (both the Universal set and the Penn Treebank set) of each token along with its lemma.

We used the Universal set to report the general trend of POS production in the two age groups. We summed the token count of each POS category for each participant, and calculated the number of tokens per 100 words for each POS category. Total number of words was also compared by group.

The Penn Treebank tag set and word lemma were used to calculate three derived lexical measures: the number of tense-inflected verbs, mean length of utterance in words (MLU), and vocabulary diversity. The number of tense-inflected verbs per 100 words (= number of modal auxiliaries per 100 words + number of present tense verbs per 100 words + number of past tense verbs per 100 words) approximated the number of clauses in a picture description. Conjoined verbs did not increase the number of clauses in our methods. The mean length of utterance (= the number of all tokens / the number of tense-inflected verbs) looked at how wordy/lengthy an utterance was.

Vocabulary diversity or lexical diversity is a measure to show how diverse one’s vocabulary usage is, and it was previously measured with a type-token ratio (= the number of unique words / the number of total words; TTR). However, one problem of a simple TTR is that it is sensitive to the text length. Various methods have been proposed to cope with this challenge (e.g., Covington & McFall, 2010; Jarvis, 2002; McKee, Malvern, & Richards, 2000; Moscoso del Prado Martín,
2017; Tweedie & Baayen, 1998), and in this paper, we reported the moving-average type-token ratio (MATTR; Covington & McFall, 2010) to compare the group difference in lexical diversity. This method calculates TTR for a fixed length of window of tokens, moving one word at a time from the beginning to the end of a text and averages the measured TTRs of all windows. Since the shortest picture description in our data contained 47 words, we set a window of 45 words. We calculate TTR scores with the number of unique lemma counts within each window, and averaged TTRs of all windows from each picture description. We also tried the MATTR with the word order of each speech sample randomized as well as other measures, such as Guiraud’s measure (Guirauds, 1954, as cited in Tweedie & Baayen, 1998), Summer’s index (= log(log(type)) / log(log(token))), and the Uber index (Jarvis, 1998, as used in Horton et al., 2010). All of them showed similar results, so we only reported the MATTR measure. Even though the accuracy of spaCy’s POS tagger is known to be very high (about 97% in spaCy’s official release), we further validated the POS tags from spaCy with manual POS tags using a subset of our data. A professional linguist manually tagged POS categories of all words produced by six older speakers in our data, and calculated error rates of spaCy’s POS tagger. The mean error rate was 5.4% (range: 2.7–7.3%) with a standard deviation of 1.7%, which suggests that automatic POS tags were on average 94.6% correct. Since the accuracy of automatic POS tags was reasonably high, automatically generated POS tags were used for analysis without any modification.

We also rated five other lexical measures for noun and verb tokens, using published norms. We used concreteness/abstractness ratings from Brysbaert et al. (2014), which rated words’ semantic concreteness/abstractness on a scale from 1 (most abstract) to 5 (most concrete). Additionally, semantic ambiguity (number of different meanings of a given word) from Hoffman et al. (2013),
word frequency (log10-scaled frequency per million words from the SUBTLEXUS corpus, Brysbaert & New, 2009), and age of acquisition (the age people on average acquire a given word, Brysbaert, Mandera, & Keuleers, 2018), and word familiarity (how many people know a given word, Brysbaert et al., 2018) were rated for each noun and verb. After determining these measures, we calculated each individual’s mean scores of the measures for nouns and verbs. The mean scores were used for group comparisons.

2.3 Acoustic data processing and measurements

We used an in-house Gaussian Mixture Models-Hidden Markov Models (GMM-HMM) based Speech Activity Detector (SAD) developed at the University of Pennsylvania Linguistic Data Consortium, to segment the speech samples into speech and silence segments. The minimum duration for speech was set at 250 msec and the minimum duration for silent pauses was set at 150 msec. This method of speech segmentation relied purely on acoustic signal properties without the use of transcripts. We then validated the SAD output by visually reviewing these segments.

We pitch-tracked segments of continuous speech with the Praat (Boersma & Weenink, 2019) pitch-tracking algorithm and extracted the 10th to 90th percentile estimates of fundamental frequency (F0) for each speech segment. The fundamental frequency is the lowest (or longest) periodicity in a complex sound wave and is the physical measure that most closely represents the perceived pitch. Frequency limits for pitch-tracking were set at 75 - 300 Hz. We also extracted the durations of speech and pause segments and the number of pauses. We converted F0 estimates from Hz to semitones (ST), using each subject’s 10th percentile as the reference frequency in order to control for individual physiological differences in voice characteristics,
such as height, weight, sex, etc. We calculated additional acoustic parameters: F0 range, which is represented as the 90th percentile F0 in the conversion just described; mean speech segment duration; total speech time, calculated by the summation of all speech segment durations in the sample; pause count; and pause rate, calculated as the number of pauses per minute (ppm) over the total speech time. Detailed description and justification of SAD and pitch-tracking specifications as well as the methods for the acoustic measurement conversion and calculation have been published previously (Nevler et al., 2017).

2.4 Statistical considerations

First, we performed Levene’s test and visually plotted density and distribution of the data to confirm that the data met the requirements for parametric tests. Then we performed student’s t-tests to compare the two age groups (young vs. older) and reported t-statistics and p-values. When they did not meet the requirements for parametric tests, we performed a Mann-Whitney-U test and reported U and p-values. To show the magnitude of the effect size, we also reported Cohen’s d, assuming that a value of 0.2 is a small effect, 0.5 a medium effect, and 0.8 a large effect. We also built two-way ANOVA (analysis of variance) models with an interaction term (age group * sex) to test the interaction of age group and sex on linguistic and acoustic measures. We confirmed that all variables that showed significant interactions between age group and sex met the assumptions of ANOVA by plotting the models’ residuals.
3. Results

3.1 Lexical measures

3.1.1 Word-level features

The results of all statistical analyses of the lexical measures are summarized in Table 2. Older participants produced significantly more pronouns, verbs, and interjections, 90.23% of which were filler words such as *um* or *uh*, compared to young speakers (Fig. 1A). Also, older speakers produced significantly fewer prepositions, conjunctions, determiners, and nouns per 100 words compared to young speakers (Fig. 1B). Group variances, which are shown as standard deviation values in Table 2, were mostly similar for all POS categories, but noun, where older speakers showed a larger group variance than young speakers. The counts of adjectives and adverbs per 100 words did not differ by group (Fig. 1C).

Older participants produced more familiar nouns and verbs compared to young speakers (Fig. 2Aa, 2Ba). The group difference in word frequency was significant for verbs (Fig. 2Bb), but not for nouns (Fig. 2Ab). Semantic ambiguity for nouns (Fig. 2Ac) differed by group, and the same measure for verbs was marginally significant (Fig. 2Bc). Both concreteness and age of acquisition measures did not differ by group in nouns and verbs.

3.1.2 Global lexical features

The means and standard deviations of all global lexical measures are also summarized in Table 2. The number of tense-inflected verbs per 100 words significantly differed by group (Fig. 3A). Furthermore, lexical diversity significantly differed by group (Fig. 3B), in that older participants
presented a lower vocabulary diversity than young speakers. Young speakers showed a larger group variance than older speakers with several outliers (Fig. 3B). However, the group difference was still significant after removing outliers. The group difference in mean length of utterance was also significant (Fig. 3C), and older speakers produced shorter utterances than young speakers. Lastly, the total number of words also significantly differed by group (Fig. 3D); the older group generally produced more words than the young group.

3.2 Acoustic features

Table 3 summarizes all statistical results of the examined acoustic measures. The 90th F0 percentile, which represents the F0 range, was similar in the young and older groups (Table 3). The younger speakers had on average longer speech and pause segments (Fig. 4A, B). The number of pauses seems higher in the older speaker’s samples (Table 3); however, after controlling for the lengthier samples by calculating the pause rate as described above, pause rate did not differ significantly between the two age groups (Fig. 4C, Table 3). Total speech duration (Fig. 4D, Table 3) was longer in the older age group.

3.3 Interaction of age group and sex

We examined the effect of age group and sex on the three variable that previous studies mostly explored: pitch, number of filler words, and total number of words. A linear regression model shows a major effect for the interaction of age group and sex on pitch range (F(1,109) = 4.37, p = .039; Fig. 5A), where the model predicts a gradual decrease in pitch differentiation between the sexes with increasing age. The number of interjections (filler words) per 100 words significantly varied by age group (F(1,109) = 5.81, p = .018) and sex (F(1,109) = 5.41, p = .022), but the
interaction of the two factors was not significant (Fig. 5B). Total number of words only differed by age group (F(1,109) = 13.32, p < .001), but not by sex or the interaction of sex and age group (p > .05; Fig. 5C).

3.4 Correlation of lexical and acoustic measures

Correlations of the lexical and acoustic measures are summarized in Table 4. We find that total speech time shows a strong positive correlation with total number of words, which is an expected pattern. Noun familiarity is strongly correlated with total number of words and total speech time, which indicates that older speakers’ longer speech time and higher word counts can be partly explained by their frequent use of familiar nouns.

Pause rate per minute is negatively correlated with total speech time and total word counts, but positively correlated with filler rate (number of interjections per 100 words). This suggests that speakers who produce more pauses also produce more filler words (i.e., filled pauses), whereas speakers who produce fewer pauses tend to speak longer with more words. Interestingly, speech rate (word per minute) in our study is only correlated with total number of words and noun frequency, but not with other measures. Participants who speak fast produce more words and more frequent nouns. Lastly, mean length of utterance is negatively correlated with noun frequency, suggesting that speakers who produce longer utterances tend to use less frequent nouns.
4. Discussion

In this study, we employed fully automated methods to investigate the effect of age and sex on both lexical and acoustic features in a digitized, semistructured speech sample. Our results in general report reduced fluency and shorter utterances in older speakers in narrative, monologic, natural speech. We found that older speakers used more pronouns, interjections and verbs when describing a picture, whereas young participants use more prepositions, determiners, nouns, and conjunctions. Also, older speakers produced more tense-inflected verbs (per 100 words), when compared to young participants. These findings suggest that older speakers are likely to express themselves with shorter utterances with limited lexical content in narrative speech. On the other hand, older speakers showed a lower lexical diversity score than young speakers in this task. Furthermore, older participants used nouns and verbs with higher familiarity, frequency (verbs only), and less ambiguity than young speakers when describing a picture. These findings indicate that the lexical content of older speakers seems to be generally less diverse than young speakers in narrative, monologic speech. On the acoustic side, older speakers’ speech contained longer pauses with increased total speech time compared to young participants. The increased total speech time and total number of words in older speakers were correlated with their frequent use of familiar nouns. Finally, we examined the effect of both age and sex in some important aspects of speech. We discuss each of these themes below.

4.1 Older speakers’ lexical content is less diverse

The automated methodology employed in this study enabled us to discover novel findings of the effect of age on the counts of POS categories in narrative, monologic speech. The results that older speakers produce more interjections and pronouns have been previously described
no one, to our knowledge, has examined at the entire range of POS categories because tagging
the POS categories of all words manually is time-consuming and error-prone. A previous study
by Ardila and Rosselli (1996) is the only study that has considered POS categories and age
difference in depth, but these authors collapsed determiners, pronouns, adverbs, prepositions, and
conjunctions together as grammatical connectors, making it hard to assess fine differences in
these categories. Thanks to recent developments in NLP, we were able to examine all POS
categories individually and we found that not only the POS categories that have been frequently
discussed in the literature but also other categories showed differences between the age groups in
narrative speech samples.

Our lexical analyses provided a clear result: Older speakers produced shorter utterances with
more tense-inflected verbs and a lower lexical diversity (= more repetition) at least in narrative,
monologic speech. Furthermore, nouns and verbs that were produced by older participants were
more familiar, more frequent (only in verbs), and less ambiguous than those produced by young
speakers in our results. These results support a conclusion of decreased lexical agility with aging,
which is in line with previous findings (Heller & Dobbs, 1993; Kemper, 1992; Nicholas et al.,
1985; Ramsay et al., 1999; Schmitter-Edgecombe, Vesneski, & Jones, 2000).

4.2 Older speakers use shorter utterances

We found that older speakers produced shorter utterances than young participants in narrative
speech, which is in line with some previous studies (e.g., Ardila & Rosselli, 1996; Jacewicz et
al., 2010), but not with others (e.g., Horton et al., 2010). Mean length of utterance in our study
was negatively correlated with noun frequency, which was in turn positively correlated with
speech rate. This suggests that speakers who used more frequent nouns tended to produce shorter utterances and speak more slowly regardless of their age.

One potential reason that previous studies presented mixed results for mean length of utterances might be due to differences in speakers’ education levels. Many studies that have investigated the effect of aging on speech (e.g., Horton et al., 2010; Jacewicz et al., 2010; Kavé et al., 2009) did not consider speakers’ education level, even though previous studies (Ardila & Rosselli, 1989; Labov, 2001; Prichard, 2016) have shown that education level of a speaker affects many aspects of speech. Our older participants were highly educated speakers, and most of them received higher education (about 16 years of education on average). Since our young and older participants were comparable in terms of their education level, the group difference in mean length of utterance in the present study seems to be a reliable reflection of cognitive decline with aging. However, since we only looked at narrative and monologic speech samples, this relation of age, education level, and mean length of utterance calls for further exploration with a larger dataset of natural conversations in future research.

4.3 Age-related differences in picture descriptions are reflected in part in the acoustic properties of speech in older speakers

In our acoustic analysis, we found that the older speakers produced shorter speech segments in a picture description, coinciding with our lexical analysis that suggested the production of shorter sentences with limited lexical content. This was in contrast to the younger speakers who produced longer speech segments with a greater mean length of utterance. These differences did not result in an incomplete description of the picture as the older participants simply spent more time speaking and produced more sentence units and words. Their total speech time was longer.
on average than that of the young speakers, and this measure excluded pause time, which was
also lengthier in the older speakers’ samples. This could be regarded as a compensatory
mechanism, implemented by older speakers to complete the cognitive task of describing the
picture in detail. In our study these findings seem to be quite comparable and interpretable as the
stimulus supports the production of highly natural narrative speech while controlling for the
topic.

Speech rate in our older group did not differ significantly from that of their young speakers. This
is in contrast to some previous reports (Bóna, 2014; Horton et al., 2010). Speech rate is used as
an umbrella term and different investigators calculate it in different ways. In our analysis we
calculated the number of words produced per minute of speech time, excluding pauses. Had we
included the pauses, which were significantly longer in our older group, we may have gotten the
wrong impression that speech rate is reduced, when in fact the rate of word production is similar,
but pause time is longer. Some researchers refer to this measurement as “articulation rate” and
still find it to be reduced in older speakers (Bóna, 2014); however, it is difficult to compare our
findings as the studies differ in the speakers as well as the speech sample characteristics. A larger
sample with a wider, fuller range of speaker ages and variable task stimuli, including natural
dialogues, may shed light on this question.

Noun familiarity and pause rate were strongly correlated with total speech time and total number
of words in the picture description task, which explains why the elderly cohort in our study
exhibited longer speech times and produced more words. Also, the interpretation of pause length
and filled pauses in our corpus is consistent with the hypothesis that pause duration represents
lexical retrieval time for speakers of any age, and this in turn is expected to be longer in an aging
group as their cognitive processing speed declines. It is a limitation of our current study that we
cannot compare the speakers’ performance on non-speech measures of cognitive processing as we do not have data from an appropriate task. In future studies we plan to incorporate such neurocognitive tests to better address this issue.

4.4 Age and sex interact in speakers’ utterances

Our results showing a greater total number of words in older speakers compared to younger speakers and no sex effects in the picture description task are in line with the findings in Bortfeld et al. (2001). However, our result did not validate the observed interaction of age and sex reported by Ardila and Rosselli (1996) or the effect of sex (either female or male speaking more than the other sex) in other studies (e.g., Dovidio et al., 1988; Mulac et al., 1986, 2000). These incongruent results might be due in part to differences in the types of speech samples that previous studies examined (e.g., monologue vs. dialogue). The question of “who talks when, and for how long” in conversations depends on the interlocutors’ perceived socio-political status compared to one another as well as specific cultural norms (Dovidio et al., 1988; Mulac et al., 2000; Ng & Deng, 2017). We tried to eliminate such confounding factors by using a picture description task, providing a neutral and uniform context for speakers’ language use. However, since we had a relatively small number of speakers with homogeneous education level and our data was monologue speech samples, our findings will need to be validated with larger-cohort cross-sectional and longitudinal studies and with dialogue speech samples.

We also showed that the number of filler words (interjections) significantly varied by both age and sex. The result of older speakers’ showing reduced fluency with more filler words is consistent with previous studies (Bortfeld et al., 2001; Heller & Dobbs, 1993; Kemper, 1992; Spieler & Griffin, 2006). Also, our result of male speakers using more filler words than female
speakers is in line with previous studies (Bortfeld et al., 2001; Mulac et al., 1988; Shriberg, 1996). Since we found the same result of interjection usage in narrative, monologic speech samples and previous studies looked at various sources of speech data, it seems that the trend in filler words, i.e., old and/or male speakers producing more filler words than young and/or female speakers, seems to be a general pattern in natural speech.

In this work, we found that the pitch range, as represented by our F0 range (the 90th percentile F0), was similar between the age groups. However, separating the groups by sex revealed an interaction, whereby the difference in F0 range between male and female speakers was much larger in the younger age group than in the older age group. This phenomenon of diminished differentiation of pitch between the sexes with aging has been previously reported (Ferrand, 2002; Linville, 1987; Mueller, 1997; Russell et al., 1995; Sataloff et al., 1997). Several hypotheses can be suggested to explain this finding. One possibility may be related to a potential evolutionary or psychosocial need for the sexual vocal differences to be more distinct in the younger age group. Alternatively, we can consider physiological explanations that involve hormonal changes (e.g., Gugatschka et al., 2010) or reduced vocal fold muscular bulk and tone in older female speakers causing their pitch to lower as they age (e.g., Xue & Hao, 2003).

Regardless of the basis for this finding, our observations suggest that normal acoustic data should be adjusted by sex differently in different age groups. With the current study design we were not able to fit a model to test the nature of this age and sex interaction in a more complete way; however, in future studies with a more complete dataset we hope to model this interaction in more depth.
5. Conclusion

This study compared lexical and acoustic features of semi-structured, narrative speech samples between healthy older and young adults using fully automated methods. We discovered novel findings of age difference in the counts of POS categories and lexical contents of nouns and verbs. Our results show that older speakers use less diverse and more limited lexical content and produce shorter utterances and longer pauses than young speakers. We also validated previous findings, including the interaction of age and sex with respect to pitch and the more frequent use of pronouns and interjections by older speakers. Most importantly, this study shows that semi-structured speech samples can be studied with fully automated methods.

Although our study provides novel methods and findings, there are a few limitations. First of all, since our data was monologue speech samples, some of our findings may or may not be salient in natural dialogues. Examining natural dialogues that have been carefully and systematically controlled for interlocutors’ socio-political status will further shed light on the effect of aging in natural language. We plan to analyze a large-scale speech corpus with natural dialogues, such as the Switchboard corpus (Godfrey & Holliman, 1993) or the Fisher corpus (Cieri et al., 2004), to examine the effect of aging on both lexical and acoustic aspects of natural dialogues. Also, our methodology did not fully examine the effect of aging in syntactic aspects of language, which is an important area to investigate. We plan to explore this area further with a syntactic dependency parser in the near future. Lastly, since we only investigated one picture description from each individual, we were not able to assess individual variance in this study. Future research with multiple picture descriptions will be needed to investigate individual variance in narrative speech.
References

Figure 1: Number of POS categories per 100 words by group. The y-axis of each panel is in a different range to optimize sensitivity to each feature.
Figure 2: Lexical scores of nouns and verbs produced by the participants. The y-axis of panel A shows the z-scored word familiarity scale – percentage of people who know a given word; that of panel B displays log-scaled word frequency per million words; that of panel C is for the number of different meanings of a given word.
Figure 3: Derived measures from POS categories. Panel A shows the total number of tense-inflected verbs (= number of modal auxiliary verbs + number of present tense verbs + number of past tense verbs), and Panel B displays vocabulary diversity, which is estimated with entropy. Panel C presents mean length of utterance (= total number of words / total number of inflected verbs). Panel D displays the group difference in total number of words.
Figure 4: Group comparisons for duration measures. The units on the y-axis in Panel A, B, D are seconds, and in Panel B are pauses per minute (ppm).
Figure 5: Effect of age and sex on linguistic features.
Table 1: Demographic characteristics of the participants.

<table>
<thead>
<tr>
<th></th>
<th>elderly (N=37)</th>
<th>young (N=76)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td></td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>68.452 (7.977)</td>
<td>20.026 (0.938)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>52.000 - 89.617</td>
<td>18.000 - 22.000</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td>.108</td>
</tr>
<tr>
<td>F</td>
<td>23 (62.2%)</td>
<td>35 (46.1%)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>14 (37.8%)</td>
<td>41 (53.9%)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>15.944 (2.529)</td>
<td>13.526 (0.938)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>12.000 - 20.000</td>
<td>11.500 - 15.500</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Mean (sd) of all lexical measures and group comparisons of young and older participants. POS counts and the number of tense-inflected verbs are per 100 words. AoA: age of acquisition, MLU: mean length of utterance.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Older</th>
<th>Young</th>
<th>t or U</th>
<th>p-value</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interjection</td>
<td>5.49 (2.56)</td>
<td>4.32 (2.42)</td>
<td>t = 2.33</td>
<td>.023</td>
<td>0.48</td>
</tr>
<tr>
<td>Pronoun</td>
<td>7.28 (2.41)</td>
<td>4.64 (2.24)</td>
<td>t = 5.57</td>
<td>< .001</td>
<td>1.14</td>
</tr>
<tr>
<td>Verb</td>
<td>22.52 (3.47)</td>
<td>20.48 (3.41)</td>
<td>t = 2.96</td>
<td>.004</td>
<td>0.6</td>
</tr>
<tr>
<td>Preposition</td>
<td>10.03 (1.97)</td>
<td>11.85 (2.89)</td>
<td>U = 902</td>
<td>.002</td>
<td>0.69</td>
</tr>
<tr>
<td>Conjunction</td>
<td>4.34 (1.84)</td>
<td>5.3 (1.95)</td>
<td>t = -2.55</td>
<td>.013</td>
<td>0.5</td>
</tr>
<tr>
<td>Determiner</td>
<td>14.27 (2.5)</td>
<td>15.7 (3.07)</td>
<td>t = -2.65</td>
<td>.009</td>
<td>0.49</td>
</tr>
<tr>
<td>Noun</td>
<td>20.36 (4.38)</td>
<td>21.59 (2.91)</td>
<td>U = 1083.5</td>
<td>.049</td>
<td>0.36</td>
</tr>
<tr>
<td>Adjective</td>
<td>5.61 (1.83)</td>
<td>5.62 (2.5)</td>
<td>t = 0.02</td>
<td>.98</td>
<td>0</td>
</tr>
<tr>
<td>Adverb</td>
<td>5.63 (2.12)</td>
<td>5.56 (2.67)</td>
<td>t = 0.37</td>
<td>.71</td>
<td>0.07</td>
</tr>
<tr>
<td>Familiarity (noun)</td>
<td>2.36 (0.03)</td>
<td>2.34 (0.03)</td>
<td>t = 2.73</td>
<td>.008</td>
<td>0.55</td>
</tr>
<tr>
<td>Familiarity (verb)</td>
<td>2.29 (0.05)</td>
<td>2.25 (0.05)</td>
<td>t = 4.1</td>
<td>< .001</td>
<td>0.8</td>
</tr>
<tr>
<td>Frequency (noun)</td>
<td>3.57 (0.17)</td>
<td>3.6 (0.15)</td>
<td>t = -0.9</td>
<td>.37</td>
<td>0.19</td>
</tr>
<tr>
<td>Frequency (verb)</td>
<td>4.54 (0.25)</td>
<td>4.38 (0.23)</td>
<td>t = 3.19</td>
<td>.002</td>
<td>0.66</td>
</tr>
<tr>
<td>Ambiguity (noun)</td>
<td>1.69 (0.06)</td>
<td>1.71 (0.06)</td>
<td>t = -2</td>
<td>.049</td>
<td>0.39</td>
</tr>
<tr>
<td>Ambiguity (verb)</td>
<td>2.11 (0.05)</td>
<td>2.13 (0.05)</td>
<td>t = -1.93</td>
<td>.057</td>
<td>0.37</td>
</tr>
<tr>
<td>Concreteness (noun)</td>
<td>4.49 (0.23)</td>
<td>4.43 (0.21)</td>
<td>t = 1.43</td>
<td>.16</td>
<td>0.3</td>
</tr>
<tr>
<td>Concreteness (verb)</td>
<td>2.6 (0.18)</td>
<td>2.65 (0.21)</td>
<td>t = -1.2</td>
<td>.23</td>
<td>0.23</td>
</tr>
<tr>
<td>AoA (noun)</td>
<td>4.42 (0.32)</td>
<td>4.53 (0.37)</td>
<td>t = -1.59</td>
<td>.12</td>
<td>0.3</td>
</tr>
<tr>
<td>AoA (verb)</td>
<td>4.7 (0.24)</td>
<td>4.75 (0.2)</td>
<td>t = -0.97</td>
<td>.34</td>
<td>0.2</td>
</tr>
<tr>
<td>Tense-inflected verb</td>
<td>12.39 (1.86)</td>
<td>11.06 (1.82)</td>
<td>t = 3.59</td>
<td>< .001</td>
<td>0.73</td>
</tr>
<tr>
<td>Vocabulary diversity</td>
<td>0.68 (0.00)</td>
<td>0.69 (0.01)</td>
<td>U = 968.5</td>
<td>.008</td>
<td>0.40</td>
</tr>
<tr>
<td>MLU</td>
<td>8.26 (1.32)</td>
<td>9.33 (1.85)</td>
<td>t = -3.52</td>
<td>< .001</td>
<td>0.63</td>
</tr>
<tr>
<td>Total words</td>
<td>176.57 (64.98)</td>
<td>136.39 (48.98)</td>
<td>t = 3.33</td>
<td>.002</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Table 3: Young versus older age acoustics comparisons.

<table>
<thead>
<tr>
<th></th>
<th>Older</th>
<th>Young</th>
<th>t</th>
<th>p-value</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>90th pitch quantile (ST)</td>
<td>6.26 (2.61)</td>
<td>6.29 (2.96)</td>
<td>-0.06</td>
<td>.951</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean speech segment duration (sec)</td>
<td>2.00 (0.57)</td>
<td>2.29 (0.60)</td>
<td>-2.0</td>
<td>.017</td>
<td>0.48</td>
</tr>
<tr>
<td>Total speech time (sec)</td>
<td>50.94 (17.02)</td>
<td>38.25 (13.83)</td>
<td>4.0</td>
<td>< .001</td>
<td>0.85</td>
</tr>
<tr>
<td>Mean pause duration (sec)</td>
<td>0.91 (0.37)</td>
<td>0.57 (0.12)</td>
<td>5.0</td>
<td>< .001</td>
<td>1.4</td>
</tr>
<tr>
<td>Total number of pause</td>
<td>25.54 (8.29)</td>
<td>18.66 (7.60)</td>
<td>4.0</td>
<td>< .001</td>
<td>0.88</td>
</tr>
<tr>
<td>Pause rate per minute (ppm)</td>
<td>31.53 (9.07)</td>
<td>29.49 (6.25)</td>
<td>1.0</td>
<td>.166</td>
<td>0.28</td>
</tr>
<tr>
<td>Speech rate (wpm)</td>
<td>208.63 (31.66)</td>
<td>215.51 (27.64)</td>
<td>-1.0</td>
<td>.239</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Table 4: Correlation matrix for the lexical and acoustic measures.

<table>
<thead>
<tr>
<th></th>
<th>Total speech time</th>
<th>Total number of words</th>
<th>Lexical diversity</th>
<th>Familiarity (noun)</th>
<th>Number of interjections</th>
<th>Pause rate</th>
<th>Speech rate</th>
<th>Frequency (noun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total speech time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92***</td>
</tr>
<tr>
<td>Total number of words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexical diversity</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Familiarity (noun)</td>
<td>0.37***</td>
<td>0.38***</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of interjections</td>
<td>0.12</td>
<td>0.08</td>
<td>0.13</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause rate</td>
<td>-0.21*</td>
<td>-0.25**</td>
<td>0.02</td>
<td>-0.12</td>
<td>0.32***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech rate</td>
<td>-0.15</td>
<td>0.22*</td>
<td>0.05</td>
<td>0.00</td>
<td>-0.15</td>
<td>-0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (noun)</td>
<td>-0.05</td>
<td>0.09</td>
<td>-0.03</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
<td>0.33***</td>
<td></td>
</tr>
<tr>
<td>MLU</td>
<td>-0.16</td>
<td>-0.18</td>
<td>0.06</td>
<td>-0.07</td>
<td>0.06</td>
<td>0.11</td>
<td>-0.09</td>
<td>-0.27**</td>
</tr>
</tbody>
</table>

* $p < .05$, ** $p < .01$, *** $p < .001$