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Outline

1. An origin myth: naming without Adam
a computer-assisted thought experiment

2. A little old-time learning theory
linear operator models of probability learning
and expected rate learning

3. Generalization:
Stochastic belief + 
categorical perception + 
social interaction ⇒

emergence of random shared beliefs
(“culture” ?)
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The problem of vocabulary consensus

• 10K-100K arbitrary pronunciations
• How is consensus established and maintained? 

Genesis 2:19-20
And out of the ground the Lord God formed every beast of 

the field, and every fowl of the air; and brought them 
unto Adam to see what he would call them: and 
whatsoever Adam called every living creature, that was 
the name thereof. And Adam gave names to the cattle, 
and to the fowl of the air, and to every beast of the 
field...
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Possible solutions
• Initial naming authority? Implausible…

– Adam
– L’académie paleolithique 

• Natural names? False to fact…
– evolved repertoire (e.g. animal alarm calls)

– “ding-dong”

• ????
• Emergent structure?

– begin with computer exploration of toy “agent-based” models

– a thought experiment to explore the consequences
of minimal, plausible assumptions

– an interesting (?) idealization, not a realistic model!
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Agent-based modeling
• AKA “individual-based modeling”

Ensembles of parameterized entities ("agents") 
interact in algorithmically-defined ways. 
Individual interactions depend (stochastically) on 
the current parameters of the agents involved; 
these parameters are in turn modified 
(stochastically) by the outcome of the 
interaction.
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Key ideas of ABM

• Complex structure emerges from the interaction of simple agents

• Agents’ algorithms evolve in a context they create collectively
• Thus behavior is like organic form

BUT
• ABM is a form of programming, 

so just solving a problem via ABM has no scientific interest
• We must prove a general property of some wide class of models

(or explain the detailed facts of a particular case)
• Paradigmatic example of general explanation:

Axelrod’s work on reciprocal altruism in the iterated prisoner’s dilemma
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Emergence of shared pronunciations

• Definition of success:
– Social convergence 

(“people are mostly the same”)
– Lexical differentiation

(“words are mostly different”)

• These two properties
are required for successful communication
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A simplest model
• Individual belief about word pronunciation:

vector of binary random variables
e.g. feature #1 is 1 with p=.9, 0 with p=.1

feature #2 is 1 with p=.3, 0 with p=.7
. . .

• (Instance of) word pronunciation: (random) binary vector
e.g.  1 0 . . .

• Initial conditions: random assignment of values to beliefs of N agents
• Additive noise (models output, channel, input noise)
• Perception: assign input feature-wise to nearest binary vector

i.e. categorical perception
• Social geometry: circle of pairwise naming among N agents
• Update method: linear combination of belief and perception

belief is “leaky integration” of perceptions
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Coding words as bit vectors

Morpheme template 
C1V1(C2V2 )(. . .)

Each bit codes for one 
feature in one position 
in the template,

e.g. “labiality of C2”

C1 labial? 1 0

C1 dorsal? 1 0

C1 voiced? 1 0

more C1
features . . .

. . . . . .

V1 high? 1 0

V1 back? 1 0

more V1
features . . .

. . . . . .

gwu . . . tæ . . .

Some 5-bit morphemes:
11111  gwu
00000  tæ
01101  ga
10110  bi
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Belief about pronunciation
as a random variable

Each pronunciation instance is an N-bit vector
(= feature vector = symbol sequence)

but belief about a morpheme’s pronunciation is a 
probability distribution over symbol sequences,
encoded as N independent bit-wise probabilities.

Thus [01101] encodes /ga/
but < .1 .9 .9 .1 .9 > is

[ 0  1  1  0  1 ] = ga with p≈.59
[ 0  1  1  0  0 ] = gæ with p≈.07
[ 0  1  0  0  1 ] = ka with p≈.07
etc. ...

C1 labial?
C1 dorsal?
C1 voiced?
V1 high?
V1 back?
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“lexicon”, “speaking”, “hearing”
Each agent’s “lexicon” is a matrix
• whose columns are template-linked features

– e.g. “is the first syllable’s initial consonant labial?”
• whose rows are words
• whose entries are probabilities

– “the 3rd word’s 2nd syllable’s vowel is back with p=.973”
MODEL 1:
To “speak” a word, an agent “throws the dice” 

to chose a pronunciation (vector of 1’s and 0’s)
based on that row’s p values

Noise is added (random values like .14006 or .50183)
To “hear” a word, an agent picks the nearest vector of 1’s and 0’s

(which will eliminate the noise if it was < .5 for a given element)
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Updating beliefs
When a word Wi is heard, 

hearer “accomodates” belief about Wi
in the direction of the perception.

New belief is a linear combination 
of old belief and new perception:

Bt = αBt-1 + (1- α)Pt

Old belief = < .1 .9 .9 .1 .9 > 

Perception  =  [ 1  1  1  0  1 ]
New belief  =  [ .95*.1+.05*1 .95*.9+.05*1 . . . ]

=  [ .145 .905 ...
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Conversational geometry
• Who talks to whom when?
• How accurate is communication of reference?
• When are beliefs updated?
• Answers don’t seem to be crucial
• In the experiments discussed today:

– N (imaginary) people are arranged in a circle
– On each iteration, each person “points and names” for her clockwise 

neighbor
– Everyone changes positions randomly after each iteration

• Other geometries (grid, random connections, etc.) produce similar 
results

• Simultaneous learning of reference from collection of available 
objects (i.e. no pointing) is also possible
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It works!
• Channel noise = gaussian with σ = .2
• Update constant α = .8
• 10 people 
• one bit in one word for people #1 and #4 shown:
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Gradient output = faster convergence
Instead of saying 1 or 0 for each feature, speakers emit real numbers 

(plus noise) proportional to their belief about the feature.
Perception is still categorical.
Result is faster convergence, because better information is provided 

about the speaker’s internal state.
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Gradient input = no convergence
If we make perception gradient (i.e. veridical),

then (whether or not production is categorical)
social convergence does not occur.
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What’s going on?
• Input categorization creates “attractors” 

that trap beliefs despite channel noise
and initially random assignments

• Positive feedback creates social consensus
• Random effects generate lexical differentiation
• Assertions: to achieve social consensus with 

lexical differentiation, any model of this general 
type needs
– stochastic (random-variable) beliefs

• to allow learning
– categorical perception

• to create attractor to “trap” beliefs
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Divergence with population size
With gradient perception, it is not just that pronunciation beliefs
continue a random walk over time. They also diverge increasingly
at a given time, as group size increases.

20 people: 40 people:
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Pronunciation differentiation

• There is nothing in this model to keep words distinct

• But words tend to fill the space randomly 

(vertices of an N-dimensional hypercube)

• This is fine if the space is large enough

• Behavior is rather lifelike with word vectors of 19-20 bits
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Homophony comparison
English is plotted with triangles (97K pronouncing dictionary).
Model vocabulary with 19 bits is X’s.
Model vocabulary with 20 bits is O’s.
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But what about using a purely digital representation of belief about 
pronunciation? What's with these (pseudo-) probabilities? Are 
they actually important to "success"? 
In a word, yes. To see this, let's explore a model in which belief 
about the pronunciation of a word is a binary vector rather than a 
discrete random variable -- or in more anthropomorphic terms, a 
string of symbols rather than a probability distribution over strings 
of symbols.
If we have a very regular and reliable arrangement of who speaks 
to whom when, then success is trivial. Adam tells Eve, Eve tells 
Cain, Cain tells Abel, and so on. There is a perfect chain of 
transmission and everyone winds up with Adam's pronunciation.
The trouble is that less regular less reliable conversational 
patterns, or regular ones that are slightly more complicated, result 
in populations whose lexicons are blinking on and off like 
Christmas tree lights. Essentially, we wind up playing a sort of 
Game of Life.



Chicago 5/24/2005 22

Consider a circular world, permuted randomly after each conversational cycle, with 
values updated at the end of each cycle so that each speaker copies exactly the 
pattern of the "previous" speaker on that cycle. Here's the first 5 iterations of a 
single feature value for a world of 10 speakers. Rows are conversational cycles, 
columns are speakers (in "canonical" order).

0 1 0 1 1 1 0 1 0 0
1 0 1 0 0 0 1 1 0 1
1 1 0 1 1 0 0 1 0 0
1 0 1 1 1 0 0 0 1 0
1 0 0 0 1 1 0 1 0 1

Here's another five iterations after 10,000 cycles -- no signs of convergence:

0 1 1 1 1 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0
1 0 0 1 0 1 1 1 0 0
1 1 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 1 0 1

Even with a combination of update algorithm and conversational geometry that 
converges, such a system will be fragile in the face of occasional incursions of 
rogue pronunciations.
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Conclusions of part 1

For “naming without Adam”, it’s sufficient that
– perception of pronunciation be categorical
– belief about pronunciation be stochastic

Are these are also necessary?
No! But…



Chicago 5/24/2005 24

Outline
1. An origin myth: naming without Adam

a computer-assisted thought experiment
2. Some old-time learning theory

linear operator models of probability learning
and expected rate learning

3. Some morals:
– Another advantage of categorical perception
– Grammatical beliefs as random variables
Stochastic belief + categorical perception + social interaction 

= emergence of coherent shared grammar
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Summary of next section
• Animals (including humans) readily learn stochastic 

properties of their environment
• Over 100 years, several experimental paradigms have 

been developed and applied to explore such learning 
• A simple linear model gives an excellent qualitative (and 

often quantitative) fit to the results from this literature
• This linear learning model is the same as the “leaky 

integrator” model used in our simulations
• Such models can predict either probability matching or 

“maximization” (i.e. emergent regularization), depending 
on the structure of the situation

• In reciprocal learning situations with discrete outcomes, 
this model predicts emergent regularization.
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Probability Learning

On each of a series of trials, the S makes a choice from ... [a] set of alternative 
responses, then receives a signal indicating whether the choice was correct…
[E]ach response has some fixed probability of being … indicated as correct, 
regardless of the S’s present of past choices…

[S]imple two-choice predictive behavior … show[s] close approximations to 
probability matching, with a degree of replicability quite unusual for quantitative 
findings in the area of human learning…

Probability matching tends to occur when the … task and instructions are such as 
to lead the S simply to express his expectation on each trial… or when they 
emphasize the desirability of attempting to be correct on every trial… 
“Overshooting” of the matching value tends to occur when instructions indicate… 
that the S is dealing with a random sequence of events… or when they emphasize 
the desirability of maximizing successes over blocks of trials.

-- Estes (1964)
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Contingent correction: When the “reinforcement” is made contingent 
on the subject’s previous responses, the relative frequency of the two 
outcomes depends jointly on the contingencies set up by the 
experimenter and the responses produced by the subject.

Nonetheless… on the average the S will adjust to the variations in 
frequencies of the reinforcing events resulting from fluctuations in his 
response probabilities in such a way that his probability of making a given 
response will tend to stabilize at the unique level which permits matching 
of the response probability to the long-term relative frequency of the 
corresponding reinforcing event.

-- Estes (1964)

In brief: people learn to predict event probabilities pretty well.
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Expected Rate Learning

[W]hen confronted with a choice between alternatives that 
have different expected rates for the occurrence of some 
to-be-anticipated outcome, animals, human and 
otherwise, proportion their choices in accord with the 
relative expected rates…

-- Gallistel (1990)
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Maximizing vs. probability matching: a classroom experiment

A rat was trained to run a T maze with feeders at the end of each branch. On a 
randomly chosen 75% of the trials, the feeder in the left branch was armed; on 
the other 25%, the feeder in the right branch was armed. If the rat chose the 
branch with the armed feeder, it got a pellet of food. … Above each feeder was a 
shielded light bulb, which came on when the feeder was armed. The rat could 
not see the bulb, but the [students in the classroom] could. They were given 
sheets of paper and asked to predict before each trial which light would come on.

Under these noncorrection conditions, where the rat does not experience reward 
at all on a given trial when it chooses incorrectly, the rat learns to choose the 
higher rate of payoff… [T]he strategy that maximizes success is always to 
choose the more frequently armed side…

The undergraduates, by contrast, almost never chose the high payoff side 
exclusively. In fact, as a group their percentage choice of that side was invariably 
within one or two points of 75 percent… They were greatly surprised to be 
shown… that the rat’s behavior was more intelligent than their own. We did not 
lessen their discomfiture by telling them that if the rat chose under the same 
conditions they did… it too would match the relative frequencies of its… choices 
to the relative frequencies of the payoffs.

-- Gallistel (1990)
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But from the right perspective,

Matching and maximizing 
are just two words describing one outcome.

-Herrnstein and Loveland (1975)

If you don’t get this, wait-- it will be explained in detail in later slides.
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Ideal Free Distribution Theory
• In foraging, choices are proportioned 

stochastically according to estimated “patch 
profitability”

• Evolutionarily stable strategy
– given competition for variably-distributed resources
– curiously, isolated animals still employ it

• Re-interpretion of many experimental learning 
and conditioning paradigms
– as estimation of “patch profitability” combined with 

stochastic allocation of choices in proportion
– simple linear estimator fits most data well
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Ideal Free Fish:

Mean # of fish at each of two  
feeding stations, for each of three 
feeding profitability ratios.

(From Godin & Keenleyside 1984, 
via Gallistel 1990)
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Ideal Free Ducks: flock of 33 ducks, two humans throwing pieces of bread.

A: both throw once per 5 seconds.  
B: one throws once per 5 seconds, the other throws once per 10 seconds.

(from Harper 1982, via Gallistel 1990)
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More duck-pond psychology – same 33 ducks:

A: same size bread chunks, different rates of throwing.
B: same rates of throwing, 4-gram vs. 2-gram bread chunks.
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Linear operator model
• The animal maintains an estimate of resource density 

for each patch (or response frequency in p-learning)
• At certain points, the estimate is updated
• The new estimate is a linear combination of the old 

estimate and the “current capture quantity”

Updating equation: CwwEE nn )1(1 -+= -

w  “memory constant”
C  “current capture quantity”

Bush & Mosteller (1951), Lea & Dow (1984)
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What is E?

• In different models:
– Estimate of resource density
– Estimate of event frequency
– Probability of response
– Strength of association
– ???
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On each trial, “current capture quantity” is 1 with p=.7, 0 with p=.3

Red and green curves are “leaky integrators” with different time constants, i.e. 
different values of w in the updating equation.



Chicago 5/24/2005 38

Linear-operator model of the undergraduates’ estimation of ‘patch profitability’:

On each trial, one of the two lights goes on, and each side’s estimate is 
updated by 1 or 0 accordingly.

Note that the estimates 
for the two sides are 
complementary, and tend 
towards .75 and .25.
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Linear-operator model of the rat’s estimate of ‘patch profitability’:

If the rat chooses correctly, the side chosen gets 1 and the other side 0.
If the rat chooses wrong, both sides get 0 (because there is no feedback).

Note that the estimates for 
the two sides are not 
complementary.
The estimate for the higher-
rate side tends towards the 
true rate (here 75%).
The estimate for the lower-
rate side tends towards 
zero (because the rat 
increasingly chooses the 
higher-rate side). 
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Since animals … proportion their choices in accord with the relative expected 
rates, the model of the rat’s behavior tends quickly towards maximization. Thus 
in this case (single animal without competition), less information (i.e. no 
feedback) leads to a higher-payoff strategy.
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The rat’s behavior influences the evidence that it sees. This feedback loop drives 
its estimate of food-provisioning probability in the lower-rate branch to zero.

If the same learning model is applied to a two-choice situation in which the 
evidence about both choices is influenced by the learner’s behavior – as in the 
case where two linear-operator learners are estimating one another’s behavioral 
dispositions – then the same feedback effect will drive the estimate for one choice 
to one, and the other to zero.

However, it’s random which choice goes to one and which to zero.
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Two models,  each responding to the stochastic behavior of the other (green 
and red traces):
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Another run, with a different random seed, where both go 
to zero rather than to one:

If this process is repeated for multiple 
independent features, the result is the 
emergence of random but shared 
structure.

Each feature goes to 1 or 0 randomly, for 
both participants.

The process generalizes to larger 
“communities” of social learners; this is 
just what happened in the naming 
model.

The learning model, though simplistic, is plausible as a zeroth-order 
characterization of biological strategies for frequency estimation.

This increases the motivation for exploring the rest of the naming model.
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Outline
1. An origin myth: naming without Adam

a computer-assisted thought experiment
2. That old-time learning theory

linear operator models of probability learning
and expected rate learning

3. Some morals:
– Another advantage of categorical perception 
– Grammatical beliefs as random variables
Stochastic belief + categorical perception + social interaction 

= emergence of coherent shared grammar
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Perception of pronunciation 
must be categorical

• Categorical (i.e. digital) perception is crucial 
for a communication system 
with many well-differentiated words

• Arguments based on “error correction”
– digital transmission avoids accumulation of noise

along multi-step transmission paths
– permits redundant coding for correction of digital errors

• Equally strong arguments based on social convergence?
– categorization is the nonlinearity that creates the attractors 

in the iterated map of reciprocal learning
– milder nonlinearities would also work here

• Note that perceptual orthogonality of phonetic dimensions was also 
assumed
– Orthogonality is not essential, but:

• multiple dimensions are needed for adequate size of lexical space
given modest number of distinct values on each dimension

• orthogonal binary variables make the model simple
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From veridical to categorical
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Beliefs about pronunciation 
must be stochastic

• “Pronunciation field” of an entry in the mental lexicon 
may be viewed as a random variable, 
i.e. a distribution over possible pronunciations

• Evidence from variability in performance
– probabilities traditionally placed in rules or constraints 

(or competition between whole grammars) 
rather than in lexical forms themselves 

• A new argument based on social convergence?
– underlying lexical forms as distributions over symbol sequences 

rather than symbol sequences themselves
– allows learning to “hill climb” in the face of social variation 

and channel noise
• Note that computational linguists now routinely assume that 

syntactic beliefs are random variables in a similar sense
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Other ideas about linguistic variation

• variable rules
– estimated by logistic regression on conditioning of alternatives 

• “competing grammars”
– linear combination of overall categorical systems

• stochastic ranking of OT constraints
• In the models discussed today

– beliefs about the pronunciation of individual words 
are random variables,
with parameters estimated from utterance-by-utterance experience
by a simple and general learning process

– stochastic rules or constraints produce similar behavior but have 
different learning properties (because they generalize across words)

– Paradoxically, stochastic beliefs about individual lexical items are seen 
here as essential to the categorical coherence of linguistic knowledge 
in a speech community
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A note on evolutionary plausibility?

• Learned stochastic beliefs are the norm
– no special pleading needed here

• Perceptual factoring of phonetic dimensions is helpful for 
vocal imitation
– factors complex learning problem 

into several simple ones
• What about categorical perception?

– natural nonlinearities?
– scaling of psychometric functions?

• semi-categorical functions also provide positive feedback that 
creates attractors in the iterated map of reciprocal learning

• more categorical à better communication
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Comparison to Collective Intelligence in Social Insects

Self-organization was originally introduced in the context of 
physics and chemistry to describe how microscopic 
processes give rise to macroscopic structures in out-of-
equilibrium systems. Recent research that extends this 
concept to ethology, suggests that it provides a concise 
description of a wide rage of collective phenomena in 
animals, especially in social insects. This description does 
not rely on individual complexity to account for complex 
spatiotemporal features which emerge at the colony level, 
but rather assumes that interactions among simple 
individuals can produce highly structured collective 
behaviors. 

E. Bonabeau et al., Self-Organization in Social Insects, 1997
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Percentage of “g-dropping” by formality & social class
(NYC data from Labov 1969)
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The rise of periphrastic do 
(from Ellegård 1953 via Kroch 2000).
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From linear to categorical perception



Chicago 5/24/2005 55

Buridan’s Ants make a decision

Percentage of Iridomyrex Humulis workers passing each (equal) arm of bridge per 3-minute period
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More complex emergent structure: termite mounds…
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Bruinsma (1979): positive feedback mechanisms, involving responses to a short-
lived pheromone in deposited soil pellets, a long-lived pheromone along travel 
paths, and a general tendency to orient pellet deposition to spatial 
heterogeneities; these lead to the construction of pillars and roofed lamellae 
around the queen.

Deneubourg (1977): a simple model with parameters for the random walk of the 
termites and the diffusion and attractivity of the pellet pheronome, producing a 
regular array of pillars.

Bonabeau et al. (1997): air convection, pheromone trails along walkways, and 
pheromones emitted by the queen; "under certain conditions, pillars are 
transformed into walls or galleries or chambers", with different outcomes 
depending not on changes in behavioral dispositions but on environmental 
changes caused by previous building. Thus "nest complexity can result from the 
unfolding of a morphogenetic process that progressively generates a diversity of 
history-dependent structures." 

Similar to models of embryological morphogenesis.

Termite Theory:


