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ABSTRACT

Interruptions occur frequently in spontaneous conversations,

and they are often associated with changes in the flow of con-

versation. Predicting interruption is essential in the design of

natural human-machine spoken dialog interface. The mod-

eling can bring insights into the dynamics of human-human

conversation. This work utilizes Hidden Condition Random

Field (HCRF) to predict occurrences of interruption in dyadic

spoken interactions by modeling both speakers’ behaviors be-

fore a turn change takes place. Our prediction model, us-

ing both the foreground speaker’s acoustic cues and the lis-

tener’s gestural cues, achieves an F-measure of 0.54, accuracy

of 70.68%, and unweighted accuracy of 66.05% on a multi-

modal database of dyadic interactions. The experimental re-

sults also show that listener’s behaviors provides an indication

of his/her intention of interruption.

Index Terms— Interruption, Prediction, Hidden Condi-

tional Field, Dyadic Interaction

1. INTRODUCTION

During dyadic spontaneous human conversation, interrup-

tions occur frequently and often correspond to breaks in the

information flow between conversation partners. Accurately

predicting such dialog events not only provides insights into

the modeling of human interactions and conversational turn-

taking behaviors but can also be used as an essential module

in the design of natural human-machine interface. Further,

we can capture information such as the likely interruption

conditions and interrupter’s signallings by incorporating both

conversation agents in the prediction model (we define in

this paper the interrupter as the person who takes over the

speaking turn and the interruptee as the person who yields

the turn). This modeling is predicated on the knowledge that

conversation flow is the result of the interplay between inter-

locutor behaviors. The proposed prediction incorporates cues

from both speakers to obtain improved prediction accuracy.

Several previous works [1, 2, 3] have analyzed different

aspects of interruption in human dialogs in terms of prosodic,

gestural, and lexical cues exhibited under different conditions

of interruption. This work is novel in the sense that it utilizes

the information that happens before a turn change occurs to
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perform prediction of interruption rather than just recogni-

tion. Our hypothesis is motivated by a smiliar theory dis-

cussed in [4, 5] that intentions of speakers are transmitted

multimodally. Hence during an interaction, the interrupter

would exhibit different nonverbal behaviors while preparing

to interrupt than when participating in coordinated smooth

turn-taking conversation. This study relies on verbal behav-

iors of the interrupter and nonverbal behaviors of the inter-

ruptee. Many of our gestural cues are extracted with intu-

itively higher-level implication, such as mouth opening, rais-

ing of eyebrows, and rigid head motions, using direct mo-

tion capture data. They provide interpretable results and offer

guidances for future efforts on automatic video feature extrac-

tion. Further, discriminant models have been shown to outper-

form generative models in several classification tasks, and the

model assumption on the independence of observation across

time is more relaxed. We utilize the Hidden Conditional Ran-

dom Field (HCRF) [6], a dynamic discriminant model, for the

interruption prediction task.

The IEMOCAP database [7] was used in the present

study. It provides detailed information on different modali-

ties (speech, gestures of face, head motions, and hand move-

ments) expressed in natural human-human conversational

settings. Furthermore, in order to cover more general cases

of interruptions, interruptions were annotated based on hu-

man judgement instead of syntactic structure based solely on

instances of overlapping speech [8]. The proposed prediction

model achieves F-measure of 0.54, accuracy of 70.68%, and

unweighted accuracy (average per class accuracy) of 66.05%

by using acoustic cues from the interruptee and gestural cues

from the interrupter for the duration of one second before turn

change happens.

The paper is organized as follows; our research method-

ology is described in Section 2, experiment results and dis-

cussion are presented in Section 3, and conclusion and future

work are given in Section 4.

2. RESEARCH METHODOLOGY

2.1. Database and Annotation

We used the IEMOCAP database for the present study [7].

It was collected for the purpose of studying different modal-

ities in expressive spoken dialog interaction. The database

was recorded in five dyadic sessions, and each session con-



sists of a different pair of male and female actors both act-

ing out scripted plays and engaging in spontaneous dialogs in

hypothetical real-life scenarios. In this paper, we are inter-

ested in the spontaneous portions of the database since they

closely resemble real-life conversation. During each sponta-

neous dialog, 61 markers (two on the head, 53 on the face, and

three on each hand) were attached to one of the interlocutors

to record (x, y, z) positions of each marker. Figure 1 illus-

trates the placement of the markers. The markers were then

placed onto the other actor and recorded again with the same

set of scenarios to complete a session. The recorded speech

data from both subjects were available for every dialog. The

database was transcribed and segmented by humans, and time

boudaries resulting from the automatic forced alignment are

assumed to correspond to the actual speech portion of each

subject.

Fig. 1. Markers Placement.

We used the Anvil software [9] as our annotation tool as it

provides a multimodal annotation interface. Our interruption

annotation scheme is based on subjective judgement rather

than the syntactic structure. Interruption was labeled if the ut-

terance made by the interrupter was to intentionally stop the

interruptee’s flow of speech. Annotator was instructed to be

aware that an interruption can happen without occurrence of

overlapping speech, and an overlapping speech instance that

is cooperative in nature should be noted as smooth transition.

In total, we annotated 1763 turn transitions in which 1558

were smooth transitions and 215 were interruptions. Since

the distribution of these two types of turn transitions is highly

unequal, we downsampled the data by including only three

sessions (six subjects) of the IEMOCAP database with three

dialogs chosen for each recording session. Subjects and di-

alogs were selected to include a majority of the annotated in-

terruptions. In total, there are 382 turn transitions annotated

with 130 interruptions and 252 smooth transitions used as our

dataset in this paper.

2.2. Feature Extraction

For every given turn transition, we extracted two sets of fea-

tures; one corresponds to the interrupter’s body gestural cues,

and another one corresponds to the interruptee’s acoustic

cues. The features were calculated for a total of one second

in duration before the interrupter starts speaking at 60 frames

per second. We assume that the duration captures relevant be-

haviors associated with turn taking. Only acoustic cues were

extracted from the interruptee because there are no markers

placed on the interruptee, and only gestural cues were ex-

tracted from the interrupter because the interrupter has not

started speaking during the time of interest.

2.2.1. Interrupter Gestural Features

The following features were extracted for the interrupter.

• Mouth opening distances denoted as (Mz,Mx)
• First-order polynomial parametrization for right and

left eyebrows denoted (Ar, Br, Al, Bl)
• Six degress of rigid head motion - pitch, roll, yaw,

translation in x, translation in y, translation in z de-

noted as (P,R, Y, Tx, Ty, Tz)

Mz was calculated as absolute distance between markers

Mou3 and Mou7 as shown in Figure 1, and Mx was calcu-

lated as distance between markers Mou1 and Mou5. The eye-

brow’s shape was parametrized by a linear equation for each

frame (Z = A∗ × X + B∗). In our preliminary experiment,

second-order polynomial parametrization resulted in a neg-

ligible coefficient for the X2 term. We only considered the

(x, z) direction. People rarely have eyebrow movement in the

y direction that is the forward and backward direction in our

database after normalization of head movements. Ar and Al

are the slopes of the polynomial calculated from the right and

left eyebrow marker positions respectively; Br and Bl are the

intercepts. The slope and intercept can be easily associated

with tilting and raising of eyebrows. Tx, Ty and Tz were de-

rived from the nose marker, and P,R, Y were computed from

all the markers using a technique based on Singular Value De-

composition (SVD) [7].

2.2.2. Interruptee Acoustic Features

The interruptee’s energy and pitch values (denoted as E, F)

were calculated using the Praat toolbox [10] at 60 frames per

second during the same time windows described previously.

Concatenation of the two sets of features along with deltas

computed from interrupter’s eyebrow parametrization, mouth

opening distance, and interruptee’s acoustic cues resulted in

a 22-dimensional feature vector to serve as the observation

inputs for our prediction model.

2.3. Review of Hidden Conditional Random Field

Details of HCRF are described in [11]. An HCRF models

the conditional probability of a class label y given a set of

observation vectors x in terms of the Equation 1,

P (y|x, θ) =
∑

s

P (y, s, |x, θ) =

∑
s eΨ(y,s,x;θ)

∑
y′∈Y,s∈Sm eΨ(y′,s,x;θ)

(1)

where s corresponds to hidden states in the model which cap-

tures the underlying structure of each class label, and the po-

tential function Ψ(y, s, x; θ) parameterized by θ is a measure



Table 1. Summary of Experiment I

Model F-Measure Accuracy Unweighted Precision Recall

Chance N/A 65.96% 50.00% N/A N/A

Logistic Regression 0.39 68.06% 58.85% 0.56 0.30

HCRF w/o Feature Selection 0.48 64.66% 60.37% 0.48 0.47

HCRF w/ Feature Selection 0.54 70.68% 66.05% 0.57 0.51

of compatibility between a label y, a set of observations x and

a configuration of hidden states s.

The following objective function is used in [6] to train

the parameters of the model using a hill-climbing optimiza-

tion technique called the Broyden Fletcher Goldfarb Shanno

(BFGS) method,

L(θ) =

n∑

i=1

log P (yi|xi, θ) −
1

2σ2
||θ||2 (2)

where n is the number of training sequences. The first term

is the log-likelihood of data, and the second term assumes a

Gaussian priors with regularization factor, σ2, on parameters,

θ. The optimal parameter is obtained as, θ∗ = argmaxθ L(θ).

At testing stage, for a new sequence x given the optimal

parameters obtained from the training data θ∗, we can assign

the label of the sequence using Equation 3 through standard

belief propagation techniques,

argmax
y∈Y

P (y|x, θ∗) (3)

3. EXPERIMENT RESULTS AND DISCUSSION

Two experiments were set up to evalute the performance of

the interruption prediction model with the following goals.

• Experiment I: Compare dynamic modeling of HCRF

with the static model using a Logistic Regression

Model. Further optimization of prediction performance

through feature selection

• Experiment II: Compare interrupter-only model,

interruptee-only model, and the optimized model

For both experiments, we performed z-normalizationwith

respect to speaker identity, and this normalization makes our

feature vectors across speakers comparable. We also per-

formed a six-fold (leave-one-subject-out) cross validation to

evaluate the performance. The label that annotates whether

the turn-transition utterance is an interruption or smooth

transition served as ground truth for computing different pre-

diction metrics. Since the database is skewed toward smooth

transitions, several different metrics other than accuracy per-

centage, such as unweighted accuracy, F-measure, precision

and recall, are reported below. F-measure is our primary

measure to assess the performances of our prediction model.

Training and testing were both done using HCRF library [12].

3.1. Experiment I

In Experiment I, three prediction models were trained. We

first trained a baseline model using logistic regression because

it can be seen as a static version of the discriminant model.

The baseline model was trained with the full 22-dimensional

feature vector on every frame of the training sequences given

the class label. At testing, the decision was made with major-

ity vote over the frames. The second model was obtained by

training an HCRF model with the full 22-dimensional feature

vector, and the number of hidden states and the regularization

factor were set to be 4 and 1 empirically. Lastly, forward

feature selection was performed through an inner five-fold

cross validation for each of the six fold validations. We se-

lected features that optimize the accuracy percentage on the

inner five-fold cross validation for every given fold. The third

model was trained using the final feature set, which was the

union of the features selected in each of the six folds, with the

number of hidden states set to 4, and the regularization factor

set to 1. Results are shown in Table 1.

The best performing model is HCRF with feature selec-

tion, which obtains an F-measure of 0.54 with 70.68% accu-

racy and 66.05% unweighted accuracy. The results indicate

that dynamic modeling improves prediction accuracy. Specif-

ically, HCRF without the Feature Selection model obtains a

23.1% relative improvement in F-measure over the Logistic

Regression model.

3.2. Experiment II

Experiment II was performed by training interrupter-only

and interruptee-only HCRF models to compare with the best

performing model - a combination of features from both

speakers after feature selection. The interrupter-only model

used an 18-dimensional feature vector corresponding to the

interrupter’s gestural cues, and the interruptee-only model

used a 4-dimensional feature vector corresponding to the

interruptee’s acoustic cues. The number of hidden states

was set to 4 with the regularization factor being 0.1 in the

interrupter-only model and 1 in the interruptee-only model.

Table 2 shows a summary of results from Experiment II.

As results indicate in Table 2, the best performing model

in terms of F-measure is the one that models both speak-

ers’ behaviors. In particular, the combination of models

improves 20% and 31% relatively in F-measure compared

with interruptee-only and interrupter-only models, respec-

tively. The combination model with the full 22-dimensional



feature vector listed in Table 1 also has a relative 6.7% and

17.1% higher F-measure compared with interruptee-only and

interrupter-only models, respectively.

Table 2. Summary of Experiment II

Model F-Measure Accuracy Unweighted

Chance N/A 65.96% 50.00%

Interrupter-only 0.41 64.66% 57.57%

Interruptee-only 0.45 68.59% 61.11%

Optimized 0.54 70.68% 66.05%

3.3. Discussion

We can gain some insights by examining the features selected

along with the performance summary. Table 3 shows the fea-

ture selected for each fold and the feature set used to generate

the final prediction model.

The first thing to notice in Table 3 is that an energy-related

feature from the interruptee is always selected as one of the

features. This is not surprising because the abrupt jump-in

during the interruptee’s speech correlates highly with what

people perceive as an interruption, while a smooth transition

often accompanies a pause between speaker turns. Indeed, if

we look at Table 2, using interruptee-only acoustic features

alone shows improvement in unweighted accuracy compared

to chance.

The more interesting phenomenon is that the feature se-

lection process also selected some of the intuitive interrupter’s

gestural features, such as mouth-opening and head rigid

movement. In fact, Table 2 shows that by using interrupter-

only cues, we still obtain an improvement in unweighted

accuracy compared to chance. This implies that the back-

ground listener’s behaviors provide information on his/her

own intention of interrupting.

Table 3. Features Selected
Fold Interruptee Interrupter

One Energy, ∆Energy Slope Right Eyebrow

Two Energy Roll

Three ∆Energy Slope Right Eyebrow

Four ∆Energy ∆Mouth Open z

Five ∆Energy Yaw

Six Energy Mouth Open z, Translation x

Final E, ∆E Mz,∆Mz, Ar, R, Y, Tx

In summary, the best prediction model is obtained through

a combination of interrupter and interruptee features with F-

measure of 0.54, 70.68% accuracy, and 66.05% unweighted

accuracy. The result shows that interruption usually happens

when the interrupter jumps in during the interruptee’s speak-

ing turn. It also shows that the interrupter’s gestural behaviors

provide information on the intention of his/her interruption.

While the prediction work is limited because of the assump-

tion of time boundary availability, the experimental results

still show encouraging results in predicting interruptions by

monitoring the speaker’s interaction in a dialog.

4. CONCLUSION AND FUTURE WORK

Interruptions in dialogs often provide essential information on

changes in the conversation flow. Prediction of such an event

before it happens can be of great use in human-machine dia-

log interface. This work investigated the usage of HCRF as

the prediction model and obtained promising prediction ac-

curacy by monitoring both interlocutors’ behaviors before a

turn change occurs. The results reinforce our hypothesis that

speakers’ multimodal behaviors can be a good predicting in-

dicator of the upcoming speech intention; in particular, the

listener’s behaviors before turn taking is shown to indicate

his/her intention of interruption.

Future work will extend the prediction modeling to pre-

dict occurrences of interruption without knowledge of exact

turn change boundaries with different fusion to model inter-

locutors’ behaviors. Further inclusion of other features, such

as lexical content and dialog acts, should be investigated as

they can also provide information on the intention of speak-

ers. Accurate modeling of interruption in a spoken interaction

can bring insights into the design of a natural dialog system

in terms of differences in behaviors under various turn-taking

structures. This could also provide improved insights into the

study of human-human conversations.

5. REFERENCES

[1] C.-C. Lee, S. Lee, and S. Narayanan, “An analysis of multi-
modal cues of interruption in dyadic spoken interactions,” in
Interspeech, Brisbane, Australia, 2008.

[2] L.-C. Liang, “Visualizing spoken discourse: prosodic form and
discourse function of interruptions,” in Second SIGdial Work-
ship on Discourse and Dialog, vol. 16, 2001, pp. 1–10.

[3] F. Yang and P. Heeman, “Avoiding and resolving initiative con-
flicts in dialog,” in NAACL HLT, Rochester, NY, Apirl 2007.

[4] D. MacNeill, Hand and Minds: What Gestures Reveal about
Thoughts. Chicago, IL: University of Chicago Press, 1992.

[5] D. Haylan, “Challenges ahead. head movements and other so-
cial acts in conversation,” AISB, 2005.

[6] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian,
and T. Darrell, “Hidden conditional random fields for gesture
recognition,” in IEEE Computer Society Conference and Com-
puter Vision and Pattern Recognition, vol. 2, 2006, pp. 1521–
1527.

[7] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower,
S. Kim, J. Chang, S. Lee, and S. Narayanan, “IEMOCAP: In-
teractive emotional dyadic motion capture database,” Journal
of Language Resources and Evaluation, vol. 42, pp. 335–359,
2008.

[8] D. G. Okamoto, L. Rashotte, and L. Smith-Lovin, “Measur-
ing interruptions: Syntactic and contextual method of coding
conversation,” Social Psychology Quarterly, vol. 65, no. 1, pp.
38–55, 2002.

[9] M. Kipp, “Anvil - a generic annotation tool for multimodal di-
alogue,” in Eurospeech, 2001, pp. 1367–1370.

[10] P. Boersma and D. Weenink, “Praat: doing phonetics by
computer (version 5.1.03) [Computer program],” March 2009.
[Online]. Available: http://www.praat.org/

[11] A. Quattoni, M. Collins, and T. Darrell, “Conditional random
field for object recognition,” NIPS, no. 17, 2004.

[12] L.-P. M. and, “Hidden-state conditional random field library.”
[Online]. Available: http://sourceforge.net/projects/hcrf/


