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ABSTRACT

This paper describes a method for efficient coding of LPC log
area parameters. It is now well recognized that samele-by-:sar.nl'ﬂe
quantization of LPC parameters is not very efficient in minimizing
the bit rate needed to code these parameters. Recent methods for
reducing the bit rate have used vector and segment quantization
methods. Much of the past work in this area has focussed on
efficient coding of LPC parameters in the context of vocoders which
put a ceiling on achievable speech quality. The results from the.se
studies cannot be directly applied to synthesis of high quality
speech. This paper describes a different approach to efficient codt:ng
of log area parameters. Our aim is to determine the extent to wht.ch
the bit rate of LPC parameters can be reduced without sacrificing
speech quality. Speech events occur generally at non-uniform‘ly
spaced time intervals. Moreover, some speech events are ..s'low while
others are fast. Uniform sampling of speech parameters is thus I.lol
efficient. We describe a non-uniform sampling and interpolation
procedure for efficient coding of log area parameters. A tempoTal
decomposition technique is used to represent the continuous varia-
tion of these parameters as a linearly-weighted sum of a number of
discrete elementary components. The location and length of each
component is automatically adapted to speech events. We find that
each elementary component can be coded as a very low information
rate signal. :

INTRODUCTION

A long standing goal of speech research has been to develop a
simple and efficient description of speech events. Such a description
is important for many practical applications, such as speech coding,
speech synthesis, and speech recognition. For example, in speech
coding, our aim is to represent the speech wave by a small number of
time-varying parameters which are capable of regenerating speech at
low bit rates without significant distortion. Speech wave has a
bandwidth of about 4 kHz. Speech parameters, such as a log area
parameter determined by LPC analysis [1-4], can be limited in
bandwidth to about 50 Hz without introducing any additional distor-
tion due to band limiting [3,4]. The total bandwidth for 12 log area
parameters is therefore 600 Hz, which is considerably lower than
4000 Hz required for the speech signal. A major source of redun-
dancy in LPC area parameters arises from the correlations between
successive time frames. These correlations are caused by a number
of factors involved in buman speech production. Most obvious of
these is the smooth movement of different articulators in the vocal
tract,

A common method of coding log area parameters is time sam-
pling followed by scalar or vector quantization [5,6]. If each param-
eter is band limited to 50 Hz, it can be sampled at 100 Hz without
loss of information. Scalar quantization of each frame of log area
parameters typically requires 48 bits which yields a bit rate of 4800
bits/sec. What can be done to reduce this bit rate? One possibility
is to reduce the bandwidth of each parameter even more. For
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example, if the bandwidth is lowered to 25 Hz, the parameters can
be sampled at 50 Hz yielding a bit rate of 2400 bits/sec. However, a
bandwidth of 25 Hz is usually too small to represent fast variations
of short transient sounds accurately.

Speech events occur generally at non-uniformly spaced time
intervals. Moreover, articulatory movements for some speech sounds
are fairly slow while for others they are relatively fast. Uniform
sampling of speech parameters is thus not efficient. With uniform
sampling, one is forced to use a small sampling interval to be able to
represent the fastest speech event accurately. Non-uniform sampling
of speech parameter variations is in general more efficient because
the sampling interval can be adapted to the nature of speech events.
Since speech sounds are produced in human speech at an average
rate of approximately between 10 and 15 sounds/sec, it should be
sufficient to specify the acoustic parameters at an average rate of less
than 15 frames/sec. In this paper, we present a procedure to break
up the continuous variation of log area parameters into discrete units
of variable lengths located at non-uniformly spaced time intervals.
Coding efficiency is achieved by coding these units rather than the
parameters themselves.

TEMPORAL DECOMPOSITION MODEL
FOR LOG AREA PARAMETERS

Consider the variation of log area parameters as a function of
time. Let y,(n) be the ith log arca parameter at the nth sampling
instant. It is assumed that the parameters have been sampled at
closely spaced time intervals small enough to represent accurately
even the fastest speech events. The sampling interval is typically 1 to
2 msec. The index i varies from 1 to p where p is the total number
of area parameters determined by LPC analysis. The value of p is
typically 16 for speech sampled at 8 kHz. The index n varies from 1
to N where n=1 is the first sample in the utterance and n=N is the
last sample in the utterance. Figure 1 shows the first 8 log area
parameters for the utterance “Joe brought a young girl” spoken by a
male speaker. The rms amplitude is also shown on the figure.

We represent y; (n) as
m
Ji(n) = Faudr(n), 1<n<N, 1<i<p, (6]
i=1

where J;(n) is the approximation of y;(n) produced by the model,
1 (n) is the kth interpolation function at the sampling instant #, and
ay, is the contribution of the kth interpolation function to the ith
area parameter. The value of m corresponds roughly to the number
of speech (and silence) events in the speech utterance in the time
interval n=1to n=N.

Equation (1) can be expressed in matrix notations as
Y=A4% )

where Y is a pxN matrix whose (i,n) element (ith row and nth
column) is y;(n), A is a pxm matrix whose (i k) element is gy, and
® is a mXN matrix whose (k,n) element is ¢ (n). We wish to
determine matrices A and ¥ so that the bit rate required to represent
them is minimum.
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Fig. 1. Plot of first 8 log area parameters and rms amplitude as a func-
tion of time for a sentence-length utterance, “Joe brought a young
girl”, spoken by a male speaker.

We will assume that the functions ¢y (n) are ordered with
respect to their locations in time. That is, the function ¢,(n) occurs
later than the function ¢;{n) and so on. Each ¢ (n) is supposed to
correspond to a particular speech event. Since a speech event lasts
for a short time, each ¢, (n) should be non zero only over a small
range of values of n. A typical ¢(n) is sketched in Fig. 2. For
efficient coding, the matrix ® should be a sparse matrix.

¢(n)
4

Fig. 2. Idealized sketch of a typical interpolation function.

We illustrate the above point in the example shown in Fig. 3.
We show there three functions of time y,(n), y,(n), and y,(n).
These functions were constructed by combining the three functions of
time ¢1(n), ¢,(n), and ¢;(n), shown in Fig. 3(b), using three
different sets of coefficients a; in Eq. (1). Thus, all of the y (n) of
Fig. 3 follow Eq. (1) exactly. Since each ¢(n) is limited to a much
shorter interval in comparison to any one of the y(n) and the
bandwidth of each y (n) is the maximum bandwidth of any one of
the ¢(n), it is obvious that direct coding of y (n) will take more bits
than the coding of the ¢(n) and the coefficients used to combine
¢(n) to form y (n).

As mentioned earlier, the value of m in Eq. (1) is related to the
duration of the speech segment and the number of sounds the speech
segment contains. In general, m is proportional to N. Consider a
short segment of speech such that the rank of the matrix ¥ 2> m.
The maximum rank of the matrix Y is p, no matter how long the
speech segment. Previous work suggests that the rank of Y is about
10 even for very long utterances. To satisfy the requirement that
rank of the matrix ¥ 2> m, the duration of speech segment should be
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Fig. 3. (a) Three different linear combinations of the basis functions
shown on the right and (b) the basis functions.

approximately 0.2 to 0.3 sec. Whenever the rank of ¥ >m, Eq. (2)
can be inverted to yield

b = (4'4)714'Y, 3)

which implies that

P
(n) = Swiyi(n), 1<k<m, 1<n<N, @

i=1
for some choice of the weights wy;. That is, each interpolation func-
tion ¢ is a linear combination of the y’s.

The problems related to determining the rank of Y are easily
resolved by looking at the eigenvalues obtained from the singular-
value decomposition of ¥. We represent Y as

Yi=UDYV, S

where U is a N Xp orthogonal matrix, ¥ is a p Xp orthogonal matrix,
D is a diagonal matrix of eigenvalues, and the superscript ¢ on a
matrix means its transpose. Typical values of the first ten eigen-
values, for a short speech segment 0.25 sec in duration, are 0.83,
0.52, 0.16, 0.13, 0.06, 0.03, 0.03, 0.02, 0.01, and 0.01, respectively.
Assuming that an error of 0.05 in log areas is insignificant, the rank
of Yis 5. We then set m to S.

It is obvious from Egs. (4) and (5) that an interpolation function
¢ (n) can also be represented as

¢ (n) = ibk,-u; (n), (3]

=
where u; (n) is the element in the nth row and the ith column of the
matrix U and by; are a set of amplitude coefficients.

DETERMINATION OF INTERPOLATING FUNCTIONS
We define a measure of distance of ¢(n) from the sample n=/ as »
6() = [F (n — D**n) | 3 ¢'nl%, )]
a n
where the sum over the index n extends over the duration of the
speech segment. The optimum ¢{(n) is chosen so as to minimize the
distance function 8(1).
Minimization of 6{1)

Since the problem of minimizing #(!) is equivalent to the prob-
lem of minimizing In 8(7}, we set the derivatives of In () with
respect to the unknown amplitude coefficients by; of Eq. (6) equal to
zero. We then obtain

S (1 - D229 ) = AT 2-g2(), 1<r<m,  ®)
“ ab, ~ 3b,

where
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A=[3 = DM | T P* )] = P 9)
From Eq. (6), we can write
() = % %bibju,(n)uj(n), 10)

iml j=1
where the subscript k has been dropped Then,

M u,(n), 1<r<m. an
il

On combining Egs. (8) and (11), one obtains
%biz @ — D*u;(n)u,(n) = A%biz u;(n)u, (n) = 2b,. (12)

i=1 n i=1 n
Equation (12) can be expressed in matrix notations as
Rb = Ab, (13)

where the element in the ith row and rth column of the matrix R is
given by

= 3 (1 — D (n)u, (n). (14)

Equation (13) has exactly m solutions. If all the X’s are different,
the solution corresponding to the smallest A provides the correct b.
In case they are not, the minimum value of A determines the
optimum b; although the choice of optimum b is not unique. The
nearest ¢(n) is determined from the coefficients b,’s by using
Eq. (6). The location of the nearest ¢(n) is given by

v() =3 (n — De*(n) / 3, 6* )] 15

The function »(I) crosses the »(/)=0 axis from the positive side at
each sampling instant / which equals the location of one of the ¢; (n)
for some k.

Better estimates of ¢(n)’s are obtained by repeating the minimi-
zation for all values of [ for which »({)=0, and using a time interval
which contains exactly 5 speech events (m = 5). This indeed is
always possible except at the beginning or at the end of an utterance
which begins or ends with a silence. A lower value of m is used in
these shorter segments. The first and last ¢(n)’s correspond to
“silence” segments.

Determination of amplitude coefficients ay,

The amplitude coefficients aj of Eq. (1) are determined by
minimizing the mean-squared error E defined by

2
E =3[y - kf:, aw S (], 6

where M represents the total number of speech events within the

range of index n over which the sum is carried out. On setting the
partial derivatives of E with respect to the coefficients a;; equal to
zero, we obtain a set of simultaneous linear equations

M
Tan T d(m¢,(n) = 3 y;(n)e, (), 1<r<M, 1<i<p, 4D
k=1 n n

which can be solved for the unknown coefficients ay .

Iterative Refinement of ¢ (n)’s and ay’s

Figure 4 shows a plot (solid line) of the interpolation functions
¢1(n), obtained from the above procedure, for the example illus-
trated in Fig. 3. The actual functions ¢ (n) are also shown as
dashed curve on the same plot. The agreement between the two is
close except for the presence of a number of small ripples and the
narrowing of the major lobe. The mean-squared criterion used for
the distance function shown in Eq. (7) is a contributing factor for
these differences. We discuss here an iterative refinement procedure
for obtaining better estimates of ¢;(n) and ay. For a given set of
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Fig. 4. Plots of the interpolation functions obtained by temporal decom-
position of the curves shown in Fig. 3(a). The dashed curves are the
actual basis functions illustrated in Fig. 3(b).

ay, we determine ¢, (7) to minimize the error E given in Eq. (16).
This is done by setting the partial derivatives of £ with respect to
& (n) equal to zero. One then obtains

—22[y,(n) Za;kdnc(n)]a,-, -0, 1<r<M, (18
6¢,( i=1 k=1

which further simplifies to

6 () =1 Sy, ~ Zaw Saxa,1/13a%). (19
i=t i=1 i=1

Since the the coding of minor -lobes of ¢(n) can use a significant
number of bits, we retain only the major lobe of the interpolation
functions and set the functions equal to zero every where else. The
resultant ¢ (n) are used again in Eq. (17) to obtain an even better
estimate of a;;.. The procedure is repeated until the decrease in error
E, as defined in Eq. (16), falls below a predetermined threshold
value. Four iterations are usually sufficient to converge both a; and
¢ (n) to stable set of values.
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Fig. 5. Plot of the timing function »(/) for the utterance “Joe brought
a young girl” shown in Fig. 1.

RESULTS

The above procedure was carried out on several sentences spoken
both by male and female speakers. We present results here for one
sentence “Joe brought a young girl” spoken by a male speaker. The
timing function »(/) defined in Eq. (15) is illustrated in Fig. 5. A
new value of v(/) was computed once every 10 msec. Each zero
crossing from positive to negative values indicates the location of a
speech event. The zero crossings going from negative side to positive
side signify a rapid shift from one ¢(n) to the next. This shift is
very sharp as expected. The function »(I) has a total of 23
negative-going zero crossings. The interpolation functions ¢(n)
located at these time instants are shown in Fig. 6 together with the
corresponding speech waveforms. As expected, the interpolation
functions for short transient sounds last over a short time interval
while the interpolation functions for relatively stationary vowel
sounds last over a much longer time interval.
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Fig. 6. Plots of speech waveform for the utterance “Joe brought a
young girl” and the various interpolation functions determined by the
temporal decomposition technique. The time intervals (in secs) for the
different segments are marked in the left margin in each case.

Figure 7 shows the first 8 log area parameters and the rms value
as a function of time for the utterance shown in Fig. 6. The solid
curve shows the original areas determined by LPC analysis of the
speech wave. The dashed curve shows the approximation of each
y:(n) by the additive model defined in Eq. (1). The results for the
remaining 8 log areas are similar. As can be seen, the agreement
between the model and the actual results is very good.

Bit Rate Required to Encode Area Parameters

The interpolating functions in general vary smoothly as a func-
tion of time. We have determined the bandwidth of each interpolat-
ing function from its amplitude spectrum. An effective bandwidth
for each spectrum can be defined as the frequency at which the
amplitude spectrum falls to 1/20 of its value at d.c. We find that an
average of 4 samples per ¢y (n) are needed to sample the function at
the Nyquist rate:

It is sufficient to encode each sample of ¢y (n) at 4 bits/sample
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Fig. 7. Plot comparing the model-generated area parameters (dashed
curve) with the actual areas (solid curve) of Fig. 1.

to keep the error in the log area parameters to be less than 0.10.
Thus the total number of bits required to encode each ¢ (n} is 16
bits.

For each k, the coefficients a; need to be coded with the same
accuracy as a single frame of log area parameters. With scalar
guantization, we find that 48 bits/frame are sufficient [4]. Recent
work on vector quantization suggests that number of bits/frame can
be reduced even further {6].

The total information rate for encoding of log area parameters .
depends upon the number of speech evenis {or sounds) spoken per
second. For slow speaking rate, this number is about 10. Assuming
5 bits to represent the location of each ¢, the bit rate for coding both
ai and ¢ (n) will then be (48 + 16 + 5) = 690 bits/sec. The bit
rate would increase to 1035 bits/sec for a speaking rate of 15 sounds
per sec.
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